【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了
月
日至
月
日的每天晝夜溫差與實驗室每天每
顆種子中的發(fā)芽數(shù),得到如下資料:
日期 |
|
|
|
|
|
溫差 |
|
|
|
|
|
發(fā)芽數(shù) |
|
|
|
|
|
該農(nóng)科所確定的研究方案是:先從這
組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再對被選取的
組數(shù)據(jù)進行檢驗.
(1)求選取的
組數(shù)據(jù)恰好是不相鄰兩天數(shù)據(jù)的概率;
(2)若選取的是
月
日與
月
日的數(shù)據(jù),請根據(jù)
月
日至
月
日的數(shù)據(jù)求出
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過
顆.則認為得到的線性回歸方程是可靠的.試問(2)中所得到的線性回歸方程是可靠的嗎?
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,
.
【答案】(1)
;(2)
;(3)見解析
【解析】分析:(1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有6種.根據(jù)等可能事件的概率做出結(jié)果.
(2)根據(jù)所給的數(shù)據(jù),先求出
,
,即求出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.
(3)根據(jù)估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,就認為得到的線性回歸方程是可靠的,根據(jù)求得的結(jié)果和所給的數(shù)據(jù)進行比較,得到所求的方程是可靠的.
詳解:
(1)設“選取的2組數(shù)據(jù)恰好是不相鄰兩天的數(shù)據(jù)”為事件A.
從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中數(shù)據(jù)為12月份的日期數(shù).
每種情況都是等可能出現(xiàn)的,事件A包括的基本事件有6種.
∴
.∴選取的2組數(shù)據(jù)恰好是不相鄰兩天數(shù)據(jù)的概率是
.
(2)由數(shù)據(jù)可得
,
.
∴
,
.
∴y關(guān)于x的線性回歸方程為
.
(3)當x=10時,
,|22-23|<2;
同理,當x=8時,
,|17-16|<2.
∴(2)中所得到的線性回歸方程是可靠的.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學參加2018年高考,根據(jù)高三年級一年來的各種大、中、小型數(shù)學模擬考試總結(jié)出來的數(shù)據(jù)顯示,甲、乙兩人能考140分以上的概率分別為
和
,甲、乙兩人是否考140分以上相互獨立,則預估這兩個人在2018年高考中恰有一人數(shù)學考140 分以上的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費
(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近8年的年宣傳費
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 298.8 | 1.6 | 1469 | 108.8 |
表中
,![]()
(1)根據(jù)散點圖判斷,
與
哪一個適宜作為年銷售量
關(guān)于年宣傳費
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)以知這種產(chǎn)品的年利率
與
、
的關(guān)系為
.根據(jù)(2)的結(jié)果求年宣傳費
時,年銷售量及年利潤的預報值是多少?
附:對于一組數(shù)據(jù)
,
……
,其回歸線
的斜率和截距的最小二乘估計分別為:
,![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱,且當x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導函數(shù)),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3
)f(log3
),則 a,b,c的大小關(guān)系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線
=1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是( )
A.1+2 ![]()
B.3+2 ![]()
C.4﹣2 ![]()
D.5﹣2 ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級開設
五門選修課,每位同學須彼此獨立地從中選擇兩門課程,已知甲同學必選
課程,乙同學不選
課程,丙同學從五門課程中隨機任選兩門.
(1)求甲同學與乙同學恰有一門課程相同的概率;
(2)設
為甲、乙、丙三位同學中選
課程的人數(shù),求
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)
的部分圖像如圖所示.
![]()
(1)求函數(shù)
的解析式;
(2)求圖中
的值及函數(shù)
的單調(diào)遞減區(qū)間;
(3)若將
的圖象向左平移
個單位后,得到
的圖像關(guān)于直線
對稱,求
的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com