已知橢圓
的左、右焦點(diǎn)分別為F1、F2,短軸端點(diǎn)分別為A、B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形![]()
(I)求橢圓的方程;
(II)若C、D分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足
,連結(jié)CM交橢圓于P,證明
為定值(O為坐標(biāo)原點(diǎn));K^S*5U.C#O%
(III)在(II)的條件下,試問(wèn)在x軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使以線(xiàn)段MP為直徑的圓恒過(guò)直線(xiàn)DP、MQ的交點(diǎn),若存在,求出Q的坐標(biāo),若不存在,說(shuō)明理由![]()
![]()
![]()
![]()
【解析】
(1)如圖,由題知
,
……3分
(2)C(-2,0),D(2,0),
則可設(shè)
…5分
![]()
…………9分
(3)設(shè)
,由題知
成立
![]()
使得以MP為直徑的圓恒過(guò)DP、MQ的交點(diǎn) ………………13分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓
的左、右焦點(diǎn)分別為
,其右準(zhǔn)線(xiàn)上
上存在點(diǎn)
(點(diǎn)
在
軸上方),使
為等腰三角形.
⑴求離心率
的范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知橢圓
的左、右焦點(diǎn)分別為
,
,
點(diǎn)
是橢圓的一個(gè)頂點(diǎn),△
是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)
分別作直線(xiàn)
,
交橢圓于
,
兩點(diǎn),設(shè)兩直線(xiàn)的斜率分別為
,
,且
,證明:直線(xiàn)
過(guò)定點(diǎn)(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿(mǎn)分14分) 已知橢圓
的左、右焦點(diǎn)分別為F1、F2,其中
F2也是拋物線(xiàn)
的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線(xiàn)
上,求直線(xiàn)AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓
的左、右焦點(diǎn)分別為
、
,離心率
,右準(zhǔn)線(xiàn)方程為
.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)
的直線(xiàn)
與該橢圓交于M、N兩點(diǎn),且
,求直線(xiàn)
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com