【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)數(shù)列{an}從哪一項開始小于0;
(2)求a1+a3+a5+…+a19值.
【答案】(1)第10項(2)![]()
【解析】
試題(1)設(shè)等差數(shù)列{an}的公差為d,由已知易得d,進(jìn)而可得通項公式,令其小于0可解;(2)結(jié)合(1)可知:a1+a3+a5+…+a19是首項為25,公差為-6的等差數(shù)列,共有10項,代入求和公式可得答案
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d,由題意可得a4=a1+3d,
解得d=﹣3,∴an=28﹣3n
令28﹣3n<0,解得n>![]()
所以數(shù)列{an}從第10項開始小于0.
(2)結(jié)合(1)可知:a1+a3+a5+…+a19是首項為25,公差為﹣6的等差數(shù)列,共有10項,
故其和![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)
,函數(shù)
(x∈R).
(1) 求函數(shù)
的單調(diào)區(qū)間;
(2) 若函數(shù)
有極大值32,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足
,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+
對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
、
是海岸線
、
上的兩個碼頭,
為海中一小島,在水上旅游線
上.測得
,
,
到海岸線
、
的距離分別為
,
.
![]()
(1)求水上旅游線
的長;
(2)海中
,且
處的某試驗產(chǎn)生的強水波圓
,生成
小時時的半徑為
.若與此同時,一艘游輪以
小時的速度自碼頭
開往碼頭
,試研究強水波是否波及游輪的航行?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(1)若
,函數(shù)
的最大值為
,最小值為
,求
的值;
(2)當(dāng)
時,函數(shù)
的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達(dá)時間”進(jìn)行統(tǒng)計,得到頻率分布直方圖如下.
![]()
![]()
![]()
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時間”不超過20分鐘的商家中隨機抽取3個商家進(jìn)行市場調(diào)研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達(dá)時間”的眾數(shù)及平均數(shù);
(3)如果以“平均送達(dá)時間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為
,
,
,
,
,
,
七組,整理得到如圖所示的頻率分布直方圖.
![]()
(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
:
的左、右焦點分別為
,橢圓
上一點
與兩焦點構(gòu)成的三角形的周長為6,離心率為
,
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
交橢圓
于
兩點,問在
軸上是否存在定點
,使得
為定值?證明你的結(jié)論.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com