分析 (1)直線l過定點,說明定點的坐標與參數(shù)k無關,故讓k的系數(shù)為0 可得定點坐標.
(2)求出A、B的坐標,代入三角形的面積公式化簡,再使用基本不等式求出面積的最小值,注意等號成立條件要檢驗,求出面積最小時的k值,從而得到直線方程.
解答 解:(1)證明:由已知得k(x+2)+(1-y)=0,
∴無論k取何值,直線過定點(-2,1).
(2)令y=0得A點坐標為(-2-$\frac{1}{k}$,0),
令x=0得B點坐標為(0,2k+1)(k>0),
∴S△AOB=$\frac{1}{2}$|-2-$\frac{1}{k}$||2k+1|
=$\frac{1}{2}$(2+$\frac{1}{k}$)(2k+1)=(4k+$\frac{1}{k}$+4)
≥$\frac{1}{2}$(4+4)=4.
當且僅當4k=$\frac{1}{k}$,即k=$\frac{1}{2}$時取等號.
即△AOB的面積的最小值為4,此時直線l的方程為$\frac{1}{2}$x-y+1+1=0.即x-2y+4=0.
點評 本題考查過定點的直線系方程特征,以及利用基本不等式求表達式的最小值.考查轉化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
| C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 若a>b,則$\frac{1}{a}$>$\frac{1}$ | B. | 若a>b,則$\frac{1}{a}$<$\frac{1}$ | C. | 若|a|>b,則a2>b2 | D. | 若a>|b|,則a2>b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com