欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.如圖所示的多面體是由一個(gè)以四邊形ABCD為地面的直四棱柱被平面A1B1C1D1所截面成,若AD=DC=2,AB=BC=2$\sqrt{3}$,∠DAB=∠BCD=90°,且AA1=CC1=$\frac{3}{2}$;
(1)求二面角D1-A1B-A的大小;
(2)求此多面體的體積.

分析 (1)建立如圖的空間坐標(biāo)系,求出平面的法向量,利用向量法進(jìn)行求解即可.
(2)根據(jù)分割法將多面體分割成兩個(gè)四棱錐,根據(jù)四棱錐的體積公式進(jìn)行求解即可.

解答 解:(1)建立如圖的空間坐標(biāo)系,由題意得A1(0,0,$\frac{3}{2}$),B(0,2$\sqrt{3}$,0),C1(-3,$\sqrt{3}$,$\frac{3}{2}$),
$\overrightarrow{B{A}_{1}}$=(0,-2$\sqrt{3}$,$\frac{3}{2}$),$\overrightarrow{B{C}_{1}}$=(-3,$\sqrt{3}$,$\frac{3}{2}$),
設(shè)平面D1A1B的法向量為$\overrightarrow{n}$=(u,v,w),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-2\sqrt{3}u+\frac{3}{2}v=0}\\{-3u+\sqrt{3}v+\frac{3}{2}w=0}\end{array}\right.$,
令v=$\sqrt{3}$,則u=1,w=4,
即$\overrightarrow{n}$=(1,$\sqrt{3}$,4),
平面A1BA的法向量為$\overrightarrow{m}$=(1,0,0),
則cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{1×\sqrt{1+3+16}}=\frac{1}{\sqrt{20}}$=$\frac{\sqrt{5}}{10}$,
則二面角D1-A1B-A的大小為arccos$\frac{\sqrt{5}}{10}$.
(2)設(shè)D1(-2,0,k),則$\overrightarrow{{A}_{1}{D}_{1}}$=(-2,0,h-,$\frac{3}{2}$),
而$\overrightarrow{{A}_{1}{D}_{1}}$•$\overrightarrow{n}$=0,則(-2,0,h-$\frac{3}{2}$)•(1,$\sqrt{3}$,4)=-2+4h-6=0,得h=2,
由題意知平面BD1D將多面體分成兩個(gè)體積相等的四棱錐B-D1DCC1和B-D1DAA1,
∵AA1⊥平面ABCD,∠DAB=90°,
∴AB⊥平面D1DCC1,
則四邊形D1DAA1是直角梯形,
${S}_{△{D}_{1}DA{A}_{1}}=\frac{1}{2}×(\frac{3}{2}+2)×2$=$\frac{7}{2}$,${V}_{B-{D}_{1}DA{A}_{1}}=\frac{1}{3}×\frac{7}{2}×2\sqrt{3}$=$\frac{7\sqrt{3}}{3}$,
則多面體的體積為$\frac{14\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題主要考查空間二面角的求解以及多面體的體積的計(jì)算,建立空間坐標(biāo)系,求出平面的法向量,利用向量法是解決本題的關(guān)鍵.綜合性較強(qiáng),運(yùn)算量較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z=$\frac{5-i}{1+2i}$的虛部為(  )
A.$\frac{11}{5}$B.$\frac{11}{5}$iC.-$\frac{11}{5}$D.-$\frac{11}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-ax2,其中x∈R,a為參數(shù)
(1)記函數(shù)g(x)=$\frac{1}{6}$f′(x)+lnx,討論函數(shù)g(x)的單調(diào)性;
(2)若曲線y=f(x)與x軸正半軸有交點(diǎn)且交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為y=g(x),求證:對(duì)于任意的正實(shí)數(shù)x,都有f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求證:平面ABB1A1⊥平面ACC1A1;
(2)求二面角A-BB1-C的正切值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.幾何體三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{32}{3}$B.$16-\frac{2π}{3}$C.$\frac{40}{3}$D.$16-\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某三棱錐的三視圖如圖所示,則該三棱錐的體積是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,若實(shí)數(shù)x,y滿足:|x|≤3,|y|≤3,-4x≤y≤$\frac{2}{3}$x,則max{|3x-y|,x+2y}的取值范圍是(  )
A.[$\frac{21}{4}$,7]B.[0,12]C.[3,$\frac{21}{4}$]D.[0,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)P是圓O外的一點(diǎn),過P作圓O的切線PA,PB,切點(diǎn)為A,B,過P作一割線交圓O于點(diǎn)E,F(xiàn),若2PA=PF,取PF的中點(diǎn)D,連接AD,并延長(zhǎng)交圓于H.
(1)求證:O,A,P,B四點(diǎn)共圓;
(2)求證:PB2=2AD•DH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)>-x•f′(x),則實(shí)數(shù)b的取值范圍是(-∞,$\frac{9}{4}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案