分析 首先根據(jù)sin2α+cos2α=1以及角的范圍求出sinα和cosα的值,然后根據(jù)誘導公式及tanα=$\frac{sinα}{cosα}$求出結(jié)果.
解答 解:∵sin2α+cos2α=1 sinα+cosα=-$\frac{1}{5}$,①
∴(sinα+cosα)2=1+2sinαcosα=$\frac{1}{25}$,
∴sinαcosα=-$\frac{12}{25}$,
∵α∈($\frac{π}{2}$,π),
∴sinα>0 cosα<0,
sinα-cosα>0,
∴(sinα-cosα)2=1+$\frac{24}{25}$=$\frac{49}{25}$,
sinα-cosα=$\frac{7}{5}$,②
聯(lián)立①②得:sinα=$\frac{3}{5}$,cosα=-$\frac{4}{5}$,
∴tanα=-$\frac{3}{4}$.
∴tan(α+25π)=tanα=-$\frac{3}{4}$.
故答案為:-$\frac{3}{4}$.
點評 此題考查了同角三角函數(shù)的基本關系,巧用sin2α+cos2α=1是解題的關鍵,要注意角的范圍,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (0,2)∪[3,+∞) | B. | (-∞,2)∪[3,+∞) | C. | (2,3] | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 乙,甲,丙 | B. | 甲,丙,乙 | C. | 甲,乙,丙 | D. | 丙,甲,乙 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{5π}{6}$ | D. | 以上選項均不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | P∪Q | B. | (∁UP)∪Q | C. | P∪(∁UQ) | D. | (∁UP)∪(∁UQ) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com