| A. | x=2或3x-4y+10=0 | B. | x=2或x+2y-10=0 | C. | y=4或3x-4y+10=0 | D. | y=4或x+2y-10=0 |
分析 切線的斜率存在時設過點P的圓的切線斜率為k,寫出點斜式方程再化為一般式.根據(jù)圓心到切線的距離等于圓的半徑這一性質(zhì),由點到直線的距離公式列出含k的方程,由方程解得k,然后代回所設切線方程即可.切線斜率不存在時,直線方程驗證即可.
解答 解:將點P(2,4)代入圓的方程得22+32=13>4,∴點P在圓外,
當過點P的切線斜率存在時,設所求切線的斜率為k,
由點斜式可得切線方程為y-4=k(x-2),即kx-y-2k+4=0,
∴$\frac{|-2k+4|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{3}{4}$.
故所求切線方程為3x-4y+16=0.
當過點P的切線斜率不存在時,方程為x=2,也滿足條件.
故所求圓的切線方程為3x-4y+16=0或x=2.
故選A.
點評 本題考查直線與圓的位置關系,考查切線方程.若點在圓外,所求切線有兩條,特別注意當直線斜率不存在時的情況,不要漏解.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)=x${\;}^{-\frac{1}{2}}$ | B. | f(x)=sin(2x+$\frac{π}{2}$) | C. | f(x)=3-x-3x | D. | f(x)=x+tanx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -7<a<24 | B. | a=7 或 a=24 | C. | a<-7或 a>24 | D. | -24<a<7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2x+y+7=0 | B. | 2x-y+5=0 | C. | x-2y+1=0 | D. | x-2y+5=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com