欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)).
(1)求的單調(diào)區(qū)間;
⑵如果是曲線上的任意一點,若以為切點的切線的斜率恒成立,求實數(shù)的最小值;
⑶討論關于的方程的實根情況.
(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2);(3)見解析.

試題分析:(1)先由對數(shù)函數(shù)的定義求出函數(shù)的定義域,然后求出函數(shù)的導數(shù),結合函數(shù)的單調(diào)性與導數(shù)的關系求解;(2)先寫出切點處的切線的斜率,然后根據(jù)已知條件得到,則有,結合二次函數(shù)在區(qū)間上的圖像與性質(zhì),可得的最小值;(3)根據(jù)已知條件構造函數(shù),將方程的實根的情況轉(zhuǎn)化為函數(shù)的零點問題.由函數(shù)單調(diào)性與導數(shù)的關系可知,在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,即最大值是,分三種情況進行討論:當,函數(shù)的圖象與軸恰有兩個交點;當時,函數(shù)的圖象與軸恰有一個交點;當時,函數(shù)的圖象與軸無交點.由方程的根與函數(shù)零點的關系得解.
試題解析:(1),定義域為,
,
,
得,;由得,.
∴函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.                 2分
(2)由題意,以為切點的切線的斜率滿足:
,
所以恒成立.
又當時,,
所以的最小值為.                                7分.
(3)由題意,方程化簡得:
.
,則
時,;當時,.
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
所以處取得極大值即最大值,最大值為
所以當,即時,的圖象與軸恰有兩個交點,
方程有兩個實根;
時,的圖象與軸恰有一個交點,
方程有一個實根;
時,的圖象與軸無交點,
方程無實根.                     12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當時,求函數(shù)的極大值和極小值;
(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(1)求函數(shù)上的最小值;
(2)對一切,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=ln(x+1)-的零點所在的大致區(qū)間是(  )
A.(0,1)B.(1,2)
C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)其中,曲線在點處的切線方程為
(I)確定的值;
(II)設曲線在點處的切線都過點(0,2).證明:當時,;
(III)若過點(0,2)可作曲線的三條不同切線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),(其中常數(shù)).
(1)當時,求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當時,曲線上總存在相異兩點、,使得曲線
在點、處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) 
(1)求的單調(diào)區(qū)間和極值;
(2)當m為何值時,不等式 恒成立?
(3)證明:當時,方程內(nèi)有唯一實根.
(e為自然對數(shù)的底;參考公式:.)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,若上的極值點分別為,則的值為( )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于三次函數(shù),給出定義:是函數(shù)的導函數(shù),的導函數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”。某同學經(jīng)研究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心。若,請你根據(jù)這一發(fā)現(xiàn),求:(1)函數(shù)的對稱中心為__________;(2)=________.

查看答案和解析>>

同步練習冊答案