【題目】如圖,在四棱錐
中,底面
為菱形,平面
平面
,
,
.
![]()
(1)求證:
;
(2)當直線
與平面
所成角為
時,求二面角
平面角的大小.
【答案】(1)證明見解析;(2)
.
【解析】
(1)取
的中點
,連接
、
、
,推導(dǎo)出
,
,可證得直線
平面
,進而可證得
;
(2)證明出
平面
,然后以點
為坐標原點,
、
、
所在直線分別為
、
、
軸建立空間直角坐標系,設(shè)
,利用直線
與平面所成的角為
求出
,然后利用空間向量法可求得二面角
的平面角的大小.
(1)取
的中點
,連接
、
、
,
![]()
,
為
的中點,
.
四邊形
是菱形,且
,
是正三角形,則
.
又
,
平面
.
又
平面
,
;
(2)
,平面
平面
,交線為
,
平面
.
又
平面
,
,
、
、
兩兩互相垂直.
以
為原點,
、
、
所在直線分別為
、
、
軸建立空間直角坐標系,
![]()
面
,
即為
與面
所成角,
,
.
在正三角形
中,
,假設(shè)
,則
.
、
、
、
.
,
,
.
設(shè)面
的法向量為
,則
.
不妨取
,則
.
同理,設(shè)面
的法向量為
,則
.
不妨取
,則
.
,
平面
平面
,
二面角
平面角為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定“口徑誤差”的計算方式為:管件內(nèi)外兩個口徑實際長分別為
,標準長分別為
則“口徑誤差”為
只要“口徑誤差”不超過
就認為合格,已知這臺車床分晝夜兩個獨立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗,則每件產(chǎn)品的檢驗費用為2.5元;若有不合格品進入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個同樣的紅球、兩個同樣的黑球和兩個同樣的白球放入下列6個格中,要求同種顏色的球不相鄰,則可能的放球方法共有______種.(用數(shù)字作答)
1 | 2 | 3 | 4 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐
,底面
為正方形,且
底面
,過
的平面與側(cè)面
的交線為
,且滿足
(
表示
的面積).
![]()
(1)證明:
平面
;
(2)當
時,二面角
的余弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位在2019年重陽節(jié)組織50名退休職工(男、女各25名)旅游,退休職工可以選擇到甲、乙兩個景點其中一個去旅游.他們最終選擇的景點的結(jié)果如下表:
男性 | 女性 | |
甲景點 | 20 | 10 |
乙景點 | 5 | 15 |
(1)據(jù)此資料分析,是否有
的把握認為選擇哪個景點與性別有關(guān)?
(2)按照游覽不同景點用分層抽樣的方法,在女職工中選取5人,再從這5人中隨機抽取2人進行采訪,求這2人游覽的景點不同的概率.
附:
,
.
P( | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標原點,圓
:
,定點
,點
是圓
上一動點,線段
的垂直平分線交圓
的半徑
于點
,點
的軌跡為
.
(Ⅰ)求曲線
的方程;
(Ⅱ)不垂直于
軸且不過
點的直線
與曲線
相交于
兩點,若直線
、
的斜率之和為0,則動直線
是否一定經(jīng)過一定點?若過一定點,則求出該定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
與橢圓
相交于點M(0,1),N(0,-1),且橢圓的離心率為
.
![]()
(1)求
的值和橢圓C的方程;
(2)過點M的直線
交圓O和橢圓C分別于A,B兩點.
①若
,求直線
的方程;
②設(shè)直線NA的斜率為
,直線NB的斜率為
,問:
是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
焦點為
,直線
過
與拋物線交于
兩點.
到準線的距離之和最小為8.
(1)求拋物線方程;
(2)若拋物線上一點
縱坐標為
,直線
分別交準線于
.求證:以
為直徑的圓過焦點
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com