在三棱拄
中,
側(cè)面
,已知
,
,
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)試在棱
(不包含端點(diǎn)
)上確定一點(diǎn)
的位置,使得
;
(Ⅲ)在(Ⅱ)的條件下,求
和平面
所成角正弦值的大小.
(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)![]()
【解析】
試題分析:(Ⅰ)欲證線面垂直,先考察線線垂直,易證
,可試證
,由題目給條件易想到利用勾股定理逆定理;(Ⅱ)要想在棱
找到點(diǎn)
,使得
,易知
,那么這時(shí)就需要使
,這時(shí)就轉(zhuǎn)化為一個(gè)平面幾何問題:以矩形
的邊
為直徑作圓,與
的公共點(diǎn)即為所求,易知只有一點(diǎn)即
的中點(diǎn)
,將以上分析寫成綜合法即可,找到這一點(diǎn)后,也可用別的方法證明,如勾股定理逆定理;(Ⅲ)求直線與平面所成的角,根據(jù)其定義,應(yīng)作出這條直線在平面中的射影,再求這條直線與其射影的夾角(三角函數(shù)值),本題可考慮點(diǎn)
在平面
的射影,易知平面
與側(cè)面
垂直,所以點(diǎn)
在平面
的射影必在兩平面的交線上,過
做
的垂線交
于
,則
為所求的直線與平面的夾角.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121400034205001896/SYS201312140004341570135029_DA.files/image015.png">,
,
,所以
,
,所以![]()
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121400034205001896/SYS201312140004341570135029_DA.files/image020.png">側(cè)面
,
平面
,所以
,又
,
所以,
平面
4分
(Ⅱ)取
的中點(diǎn)
,連接
,
,
,等邊
中,![]()
同理,
,
,所以
,可得
,所以![]()
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121400034205001896/SYS201312140004341570135029_DA.files/image020.png">側(cè)面
,
平面
,所以
,且
,
所以
平面
,所以
;
8分
(Ⅲ)
側(cè)面
,
平面,得平面
平面
,
過
做
的垂線交
于
,
平面![]()
連接
,則
為所求,
因?yàn)?
,
,所以
,
為
的中點(diǎn) 得
為
的中點(diǎn),
, 由(2)知
,所以
13分
考點(diǎn):空間中直線與平面垂直、直線與平面平行、平面與平面垂直的判定與性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在三棱拄
中,
側(cè)面
,已知AA1=2,
,![]()
(Ⅰ)求證:
;
(Ⅱ)試在棱
(不包含端點(diǎn)
上確定一點(diǎn)
的位置,使得
;
(Ⅲ) 在(Ⅱ)的條件下,求二面角
的平面角的正切值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在三棱拄
中,
側(cè)面
,已知
![]()
![]()
(1)求證:
;![]()
(2)試在棱
(不包含端點(diǎn)
上確定一點(diǎn)
的位置,![]()
使得
;![]()
(3) 在(2)的條件下,求二面角
的平面角的正切值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市高三第四次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱拄
中,
側(cè)面
,已知![]()
![]()
![]()
(1)求證:
;(4分)
(2)、當(dāng)
為
的中點(diǎn)時(shí),求二面角
的平面角的正切值.(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆吉林省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱拄
中,
側(cè)面
,已知AA1=2,
,
.
![]()
(1)求證:
;
(2)試在棱
(不包含端點(diǎn)
上確定一點(diǎn)
的位置,使得
;
(3)在(2)的條件下,求二面角
的平面角的正切值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com