選修4-1幾何證明選講,如圖,D,E分別是AB,AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知
為方程
的兩根,
![]()
(1) 證明 C,B,D,E四點(diǎn)共圓;
(2)若
,求C,B,D,E四點(diǎn)所在圓的半徑。
(1)見(jiàn)解析(2)![]()
【解析】本試題主要是考查了四點(diǎn)共圓的證明以及圓的半徑的求解綜合運(yùn)用。
(1)由于連接DE,根據(jù)題意在△ADE和△ACB中,結(jié)合根與系數(shù)的關(guān)系可知△ADE∽△ACB,那么因此 ∠ADE=∠ACB , 所以C,B,D,E四點(diǎn)共圓。
(2)m=4, n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故 AD=2,AB=12.
取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過(guò)G,F作AC,AB的垂線(xiàn),兩垂線(xiàn)相交于H點(diǎn),連接DH.因?yàn)镃,B,D,E四點(diǎn)共圓,所以C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.
結(jié)合平行關(guān)系得到結(jié)論。
解:(I)連接DE,根據(jù)題意在△ADE和△ACB中,
即
.又∠DAE=∠CAB,從而△ADE∽△ACB
因此∠ADE=∠ACB , 所以C,B,D,E四點(diǎn)共圓。
(Ⅱ)m=4, n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故 AD=2,AB=12.
取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過(guò)G,F作AC,AB的垂線(xiàn),兩垂線(xiàn)相交于H點(diǎn),連接DH.因?yàn)镃,B,D,E四點(diǎn)共圓,所以C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.
由于∠A=900,故GH∥AB, HF∥AC.
HF=AG=5,DF=
(12-2)=5.
故C,B,D,E四點(diǎn)所在圓的半徑為5![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 192 |
| 25 |
| 192 |
| 25 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π |
| 4 |
| 2 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| x+2y |
| xy |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com