已知拋物線
的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于
軸(垂足為T),與拋物線交于不同的兩點(diǎn)P、Q,且
.
(Ⅰ)求點(diǎn)T的橫坐標(biāo)
;
(Ⅱ)若橢圓C以F1,F2為焦點(diǎn),且F1,F2及橢圓短軸的一個(gè)端點(diǎn)圍成的三角形面積為1.
① 求橢圓C的標(biāo)準(zhǔn)方程;
② 過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),設(shè)
,若
的取值范圍.
(Ⅰ)
;
(Ⅱ)(ⅰ
;(ⅱ)
.
解析試題分析:(Ⅰ)由題意得
,
,設(shè)
,![]()
則
,
.
由
,
得
即
,① 3分
又
在拋物線上,則
,②
聯(lián)立①、②易得
5分
(Ⅱ)(。┰O(shè)橢圓的半焦距為
,由題意得
,
設(shè)橢圓
的標(biāo)準(zhǔn)方程為
,
由
,解得
6分
從而
故橢圓
的標(biāo)準(zhǔn)方程為
7分
(ⅱ)方法一:
容易驗(yàn)證直線
的斜率不為0,設(shè)直線
的方程為![]()
將直線
的方程代入
中得:
. 8分
設(shè)
,則由根與系數(shù)的關(guān)系,
可得:
⑤
⑥ 9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/1/1jbye2.png" style="vertical-align:middle;" />,所以
,且
.
將⑤式平方除以⑥式,得:![]()
由![]()
![]()
所以
11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/7/1xmmj2.png" style="vertical-align:middle;" />,所以
,
又
,所以
,
故![]()
,
令
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/73/a/1oex83.png" style="vertical-align:middle;" /> 所以
,即
,
所以
.
而
,所以
.
所以
. 14分
方法二:
1)當(dāng)直線
的斜率不存在時(shí),即![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
動(dòng)圓M過定點(diǎn)A(-
,0),且與定圓A´:(x-
)2+y2=12相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)過點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
的直線
與橢圓
相切
,直線
與
軸交于點(diǎn)
,當(dāng)
為何值時(shí)
的面積有最小值?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點(diǎn)
,橢圓
左右焦點(diǎn)分別為
,上頂點(diǎn)為
,
為等邊三角形.定義橢圓C上的點(diǎn)
的“伴隨點(diǎn)”為
.
(1)求橢圓C的方程;
(2)求
的最大值;
(3)直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“伴隨點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.橢圓C的右頂點(diǎn)為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知離心率為
的橢圓
上的點(diǎn)到左焦點(diǎn)
的最長(zhǎng)距離為
.![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點(diǎn)
任作一條與兩坐標(biāo)軸都不垂直的弦
,若點(diǎn)
在
軸上,且使得
為
的一條內(nèi)角平分線,則稱點(diǎn)
為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
及點(diǎn)
,直線
斜率為1且不過點(diǎn)
,與拋物線交于點(diǎn)A,B,
(1) 求直線
在
軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點(diǎn)C、D,證明:AD,BC交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為
和
,且|![]()
|=2,
點(diǎn)(1,
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過
的直線
與橢圓C相交于A,B兩點(diǎn),若
A
B的面積為
,求以
為圓心且與直線
相切是圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定直線
動(dòng)圓M與定圓
外切且與直線
相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是曲線C上兩動(dòng)點(diǎn)(異于坐標(biāo)原點(diǎn)O),若
求證直線AB過一定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,O為坐標(biāo)原點(diǎn),過點(diǎn)P(2,0)且斜率為k的直線L交拋物線y
=2x于M(x
,y
),N(x
,y
)兩點(diǎn). ⑴寫出直線L的方程;⑵求x
x
與y
y
的值;⑶求證:OM⊥ON![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com