【題目】高二年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:( )
A.
B.
C.
D. ![]()
【答案】B
【解析】解:由題意知本題是一個(gè)古典概型,
∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:
;
滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:
①將一班的3位同學(xué)“捆綁”在一起,有
種方法;
②將一班的“一梱”看作一個(gè)對象與其它班的5位同學(xué)共6個(gè)對象排成一列,有
種方法;
③在以上6個(gè)對象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有
種方法.
根據(jù)分步計(jì)數(shù)原理(乘法原理),共有
種方法.
∴一班有3位同學(xué)恰好被排在一起(指演講序號相連),
而二班的2位同學(xué)沒有被排在一起的概率為:P=
=![]()
故選B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)若
,求直線
的普通方程及曲線
的直角坐標(biāo)方程;
(Ⅱ)若直線
與曲線
有兩個(gè)不同的交點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在
,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
![]()
(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為
,
的芒果中隨機(jī)抽取
個(gè),再從這
個(gè)中隨機(jī)抽取
個(gè),求這
個(gè)芒果中恰有
個(gè)在
內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有
個(gè),經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以
元/千克收購;
B:對質(zhì)量低于
克的芒果以
元/個(gè)收購,高于或等于
克的以
元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點(diǎn)分別為F1,F2,離心率為
,設(shè)過點(diǎn)F2的直線l被橢圓C截得的線段為MN,當(dāng)l⊥x軸時(shí),|MN|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點(diǎn)P,使得當(dāng)l變化時(shí),總有PM與PN所在的直線關(guān)于x軸對稱?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線C的參數(shù)方程為
(其中
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ)求C的普通方程和直線
的傾斜角;
(Ⅱ)設(shè)點(diǎn)
(0,2),
和
交于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
與圓
.
(1)若圓
與圓
外切,求實(shí)數(shù)m的值;
(2)在(1)的條件下,若直線l與圓
的相交弦長為
且過點(diǎn)
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000
公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為
,土地的征用面積為第一層的
倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為
,以后每增高一層,其建筑費(fèi)用就增加
,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為
萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形
是矩形,
,將
沿著對角線AC翻折,得到
,設(shè)頂點(diǎn)
在平面
上的投影為O.
![]()
(1)若點(diǎn)O恰好落在邊AD上,①求證:
平面
;②若
,
,當(dāng)BC取到最小值時(shí),求k的值;
(2)當(dāng)
時(shí),若點(diǎn)O恰好落在
的內(nèi)部(不包括邊界),求二面角
的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在區(qū)間
上不是單調(diào)函數(shù),求實(shí)數(shù)
的范圍;
(2)若對任意
,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),設(shè)
,對任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在
軸上?請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com