【題目】已知函數(shù)
. (Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)
,若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)當(dāng)a=1時(shí),函數(shù)
,
∴f(1)=1﹣1﹣ln1=0.
,
曲線f(x)在點(diǎn)(1,f(1))處的切線的斜率為f'(1)=1+1﹣1=1.
從而曲線f(x)在點(diǎn)(1,f(1))處的切線方程為y﹣0=x﹣1,
即y=x﹣1.
(Ⅱ)
.
要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需f′(x)≥0在(0,+∞)內(nèi)恒成立.
即:ax2﹣x+a≥0得:
恒成立.
由于
,
∴
,
∴ ![]()
∴f(x)在(0,+∞)內(nèi)為增函數(shù),實(shí)數(shù)a的取值范圍是
.
(III)∵
在[1,e]上是減函數(shù)
∴x=e時(shí),g(x)min=1,x=1時(shí),g(x)max=e,即g(x)∈[1,e]
f'(x)=
令h(x)=ax2﹣x+a
當(dāng)
時(shí),由(II)知f(x)在[1,e]上是增函數(shù),f(1)=0<1
又
在[1,e]上是減函數(shù),故只需f(x)max≥g(x)min,x∈[1,e]
而f(x)max=f(e)=
,g(x)min=1,即)=
≥1
解得a≥ ![]()
∴實(shí)數(shù)a的取值范圍是[
,+∞)
【解析】(Ⅰ)當(dāng)a=1時(shí),求出切點(diǎn)坐標(biāo),然后求出f'(x),從而求出f'(1)的值即為切線的斜率,利用點(diǎn)斜式可求出切線方程;(Ⅱ)先求導(dǎo)函數(shù),要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需f′(x)≥0在(0,+∞)內(nèi)恒成立,然后將a分離,利用基本不等式可求出a的取值范圍;(III)根據(jù)g(x)在[1,e]上的單調(diào)性求出其值域,然后根據(jù)(II)可求出f(x)的最大值,要使在[1,e]上至少存在一點(diǎn)x0,使得f(x0)≥g(x0)成立,只需f(x)max≥g(x)min,x∈[1,e],然后建立不等式,解之即可求出a的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
在
上有最大值9,最小值4.
(1)求實(shí)數(shù)
的值;
(2)若不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)若方程
有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體,它的下面是一個(gè)圓柱,上面是一個(gè)圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫出此幾何體的直觀圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線
﹣
=1(a>0,b>0)上任意一點(diǎn)P可向圓x2+y2=(
)2作切線PA,PB,若存在點(diǎn)P使得
=0,則雙曲線的離心率的取值范圍是( )
A.[
,+∞)
B.(1,
]
C.[
,
)
D.(1,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為△
所在平面外一點(diǎn),且
,
,
兩兩垂直,則下列結(jié)論:①
;②
;③
;④
.其中正確的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當(dāng)a=4時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個(gè)實(shí)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式[2tx2﹣(t2﹣1)x+2]lnx≤0對(duì)任意x∈(0,+∞)恒成立,則實(shí)數(shù)t的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=﹣Asin(ωx+
)的圖象,可以將f(x)的圖象( ) ![]()
A.向右平移
個(gè)單位長(zhǎng)度
B.向右平移
個(gè)單位長(zhǎng)度
C.向左平移
個(gè)單位長(zhǎng)度
D.向左平移
個(gè)單位長(zhǎng)度
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com