分析 (Ⅰ)利用向量的數(shù)量積以及兩角和與差的三角函數(shù)化簡(jiǎn)函數(shù)的解析式,然后求解f(x)的最小正周期;
(Ⅱ)利用函數(shù)的解析式求解A,然后利用余弦定理求解即可,得到bc的范圍,然后利用基本不等式求解最值.
解答 解:(Ⅰ)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$=($\sqrt{3}$,1)•($\sqrt{3}$-cosx$\sqrt{3}$,1-sinx)
=-$\sqrt{3}$cosx-sinx+4=-2sin(x+$\frac{π}{3}$)+4,
f(x)的最小正周期T=$\frac{2π}{2}$=π;
(Ⅱ)∵f(A)=4,∴A=$\frac{2π}{3}$,
又∵BC=3,
∴9=(b+c)2-bc.
∵bc≤$\frac{(b+c)^{2}}{4}$,
∴$\frac{3(b+c)^{2}}{4}≤9$,
∴b+c≤2$\sqrt{3}$,當(dāng)且僅當(dāng)b=c取等號(hào),
∴三角形周長(zhǎng)最大值為3+2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查向量的數(shù)量積以及兩角和與差的三角函數(shù),三角函數(shù)的周期,基本不等式以及余弦定理的應(yīng)用,考查計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{45}$ | B. | $\frac{1}{86}$ | C. | $\frac{1}{122}$ | D. | $\frac{1}{167}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 2 | C. | log29 | D. | log27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ | B. | [-1,1] | C. | $[{-\sqrt{2},\sqrt{2}}]$ | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com