分析 化切為弦,得到tan2α-$\frac{1}{ta{n}^{2}α}$=$\frac{si{n}^{2}α}{co{s}^{2}α}-\frac{co{s}^{2}α}{si{n}^{2}α}$,再通分,利用同角三角函數(shù)關(guān)系式、二倍角公式能證明tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
解答 證明:tan2α-$\frac{1}{ta{n}^{2}α}$=$\frac{si{n}^{2}α}{co{s}^{2}α}-\frac{co{s}^{2}α}{si{n}^{2}α}$=$\frac{si{n}^{4}α-co{s}^{4}α}{si{n}^{2}αco{s}^{2}α}$=$\frac{si{n}^{2}α-co{s}^{2}α}{(\frac{1}{2}sin2α)^{2}}$=-$\frac{cos2α}{\frac{1}{4}si{n}^{2}2α}$=-$\frac{4cos2α}{si{n}^{2}2α}$
-$\frac{2sin4α}{si{n}^{3}2α}$=-$\frac{2×2sin2αcos2α}{si{n}^{3}2α}$=-$\frac{4soc2α}{si{n}^{2}2α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
∴tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.
點(diǎn)評(píng) 本題考查三角形恒等式的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意化切為弦、同角三角函數(shù)關(guān)系式、二倍角公式的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0.875 | B. | 0.125 | C. | 1 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{4}{3}$ | B. | $\frac{4\sqrt{2}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com