【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
![]()
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中從事技術(shù)和運(yùn)營(yíng)崗位的人數(shù)占總?cè)藬?shù)的三成以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
【答案】ABC
【解析】
根據(jù)扇形統(tǒng)計(jì)圖和條狀圖,逐一判斷選項(xiàng),得出答案.
選項(xiàng)A:因?yàn)榛ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,“90后”占比為56%,
其中從事技術(shù)和運(yùn)營(yíng)崗位的人數(shù)占的比分別為39.6%和17%,
則“90后”從事技術(shù)和運(yùn)營(yíng)崗位的人數(shù)占總?cè)藬?shù)的
.“80前”和“80后”
中必然也有從事技術(shù)和運(yùn)營(yíng)崗位的人,則總的占比一定超過(guò)三成,
故選項(xiàng)A正確;
選項(xiàng)B:因?yàn)榛ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,“90后”占比為56%,
其中從事技術(shù)崗位的人數(shù)占的比為39.6%,則“90后”從事技術(shù)
崗位的人數(shù)占總?cè)藬?shù)的
.“80前”和“80后”
中必然也有從事技術(shù)崗位的人,則總的占比一定超過(guò)20%,故選項(xiàng)B正確;
選項(xiàng)C:“90后”從事運(yùn)營(yíng)崗位的人數(shù)占總?cè)藬?shù)的比為
,
大于“80前”的總?cè)藬?shù)所占比3%,故選項(xiàng)C正確;
選項(xiàng)D:“90后”從事技術(shù)崗位的人數(shù)占總?cè)藬?shù)的
,
“80后”的總?cè)藬?shù)所占比為41%,條件中未給出從事技術(shù)崗位的占比,
故不能判斷,所以選項(xiàng)D錯(cuò)誤.
故選:ABC.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市勞動(dòng)部門(mén)堅(jiān)持就業(yè)優(yōu)先,采取多項(xiàng)措施加快發(fā)展新興產(chǎn)業(yè),服務(wù)經(jīng)濟(jì),帶來(lái)大量就業(yè)崗位,據(jù)政府工作報(bào)告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬(wàn)人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個(gè)百分點(diǎn),處于近20年來(lái)的最低水平.
(1)現(xiàn)從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:
失業(yè) | 就業(yè) | 合計(jì) | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合計(jì) | 5 | 95 | 100 |
根據(jù)聯(lián)表判斷是否有99%的把握認(rèn)為失業(yè)與性別有關(guān)?
附:
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
![]()
(2)調(diào)查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營(yíng)經(jīng)濟(jì),大型國(guó)企對(duì)就業(yè)支撐作用不斷增強(qiáng),其崗位比例為
,現(xiàn)從全市新增就業(yè)人群(數(shù)目較大)中抽取4人,記抽到的新興業(yè)態(tài)的就業(yè)人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
,
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)若不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
為常數(shù).
(1)若直線
是曲線
的一條切線,求實(shí)數(shù)
的值;
(2)當(dāng)
時(shí),若函數(shù)
在
上有兩個(gè)零點(diǎn).求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱
中,側(cè)面
是菱形,其對(duì)角線的交點(diǎn)為
,且
,
.
![]()
(1)求證:
平面
;
(2)設(shè)
,若直線
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),整理如下:
甲公司員工
:410,390,330,360,320,400,330,340,370,350
乙公司員工
:360,420,370,360,420,340,440,370,360,420
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根據(jù)題中數(shù)據(jù)寫(xiě)出甲公司員工
在這10天投遞的快件個(gè)數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工
每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為
(單位:元),求
的分布列和數(shù)學(xué)期望;
(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體
的棱長(zhǎng)滿足
,
,現(xiàn)將四面體
放入一個(gè)主視圖為等邊三角形的圓錐中,使得四面體
可以在圓錐中任意轉(zhuǎn)動(dòng),則圓錐側(cè)面積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐
中,
為正三角形,平面
平面
,E為
的中點(diǎn),
,
,
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求直線
與平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在點(diǎn)M,使得
平面
?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線l:
,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線
.
(Ⅰ)求曲線C被直線l截得的弦長(zhǎng);
(Ⅱ)與直線l垂直的直線EF與曲線C相切于點(diǎn)Q,求點(diǎn)Q的直角坐標(biāo).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com