如圖,在直三棱柱ABC-A1B1C1中,平面ABC⊥側(cè)面A1ABB1.
![]()
(Ⅰ)求證:AB⊥BC;
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θ與φ的大小關(guān)系,并予以證明.
(Ⅰ)證明:如下圖,過點A在平面A1ABB1內(nèi)作AD⊥A1B于D,則由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC
側(cè)面A1ABB1=A1B,得AD⊥平面A1BC,又BC
平面A1BC,
![]()
所以AD⊥BC.
因為三棱柱ABC―A1B1C1是直三棱柱,
則AA1⊥底面ABC,
所以AA1⊥BC.
又AA1
AD=A,從而BC⊥側(cè)面A1ABB1,
又AB
側(cè)面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:連接CD,則由(Ⅰ)知
是直線AC與平面A1BC所成的角,
是二面角A1―BC―A的平面角,即![]()
于是在Rt△ADC中,
在Rt△ADB中,![]()
由AB<AC,得
又
所以![]()
解法2:由(Ⅰ)知,以點B為坐標(biāo)原點,以BC、BA、BB1所在的直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,
![]()
設(shè)AA1=a,AC=b,AB=c,則 B(0,0,0), A(0,c,0), ![]()
于是![]()
![]()
設(shè)平面A1BC的一個法向量為n=(x,y,z),則
由
得![]()
可取n=(0,-a,c),于是
,
與n的夾角
為銳角,則
與
互為余角.
![]()
![]()
所以![]()
于是由c<b,得![]()
即
又
所以![]()
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com