【題目】四位數(shù)
和
互為反序的正整數(shù),且
,
、
分別有16個、12個正因數(shù)(包括1和本身),
的質(zhì)因數(shù)也是
的質(zhì)因數(shù),但
的質(zhì)因數(shù)比
的質(zhì)因數(shù)少1個,求
的所有可能值.
【答案】![]()
【解析】
設(shè)
,
.則
.
由
,則
.
故
,
,
.
于是,
,
.
由
為奇數(shù),知
與
一奇一偶.
若
為偶數(shù),即
,則
,
為偶數(shù).矛盾.
因此,
為偶數(shù),
為奇數(shù).
記
分解質(zhì)因數(shù)后,
的個數(shù)為
,2的個數(shù)為
.則
,
.
由因數(shù)個數(shù)定理得
.
于是 ,
,
.
所以,
或8,
或7.
故
至多有三個質(zhì)因數(shù).
于是,
至多含有兩個質(zhì)因數(shù),3是
的一個質(zhì)因數(shù).
若
只有一個質(zhì)因數(shù),則這個質(zhì)因數(shù)為3.從而,
,與
是四位數(shù)相矛盾.
因此,
含有兩個質(zhì)因數(shù).
設(shè)
的另一個質(zhì)因數(shù)為
.
因為
,所以,
或
或
.
故
.
又
,則
,
,即
.
由
,知
.
此時,
的值大于
.
當(dāng)
時,
.
而
不互為反序數(shù),于是,
.此時,
.
因此,
.于是,
,
,
. ①
.
故
.
因為
為奇數(shù),所以,
為奇數(shù).故
.
由式①得
.
因為
為偶數(shù),所以,
為偶數(shù).
于是,
或8.
當(dāng)
時,由式①得
.
因為
,所以,
.
得
,
,
.
于是,
或9.
當(dāng)
時,
;
當(dāng)
時,
.
于是,
或1998.
因為
,所以,
.
又
,
符合題意.
因此,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(Ⅰ)試判斷函數(shù)
的單調(diào)性;
(Ⅱ)當(dāng)
時,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
分別是雙曲線E:
的左、右焦點,P是雙曲線上一點,
到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)
時,
的面積為
,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進(jìn)定點扶貧各項工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時間的關(guān)系如下表所示:
土地使用面積 | 1 | 2 | 3 | 4 | 5 |
管理時間 | 8 | 10 | 13 | 25 | 24 |
并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關(guān)系數(shù)
的大小,并判斷管理時間
與土地使用面積
是否線性相關(guān)?
(2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?
(3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為
,求
的分布列及數(shù)學(xué)期望。
參考公式:
![]()
![]()
其中
。臨界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代十進(jìn)制的算籌計數(shù)法,在數(shù)學(xué)史上是一個偉大的創(chuàng)造,算籌實際上是一根根同長短的小木棍.如圖,是利用算籌表示數(shù)
的一種方法.例如:3可表示為“
”,26可表示為“
”.現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用
這9數(shù)字表示兩位數(shù)的個數(shù)為
![]()
![]()
A.13B.14C.15D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,點
,點
是圓
上的一個動點,點![]()
分別在線段![]()
上,且滿足
,
.
(1)求點
的軌跡方程;
(2)過點
作斜率為
的直線
與點
的軌跡相交于
兩點,在
軸上是否存在點
,使得以
為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,點
在橢圓
上.
(1)求橢圓
的方程;
(2)若不過原點
的直線
與橢圓
相交于
兩點,與直線
相交于點
,且
是線段
的中點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系xOy中,A(-2,1),B(-2,4),點P是滿足
的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則
的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機(jī)從一些芒果樹上摘下100個芒果,其質(zhì)量分別在
,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.
![]()
(1)估計這組數(shù)據(jù)平均數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為
,
的芒果中隨機(jī)抽取5個,再從這5個中隨機(jī)抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總計,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com