【題目】如圖,在矩形
中,
,
為
的中點(diǎn),現(xiàn)將
與
折起,使得平面
平面
,平面
平面
.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
【答案】(1)證明見解析 (2)二面角
的平面角余弦值為
.
【解析】
(1)過點(diǎn)
作
于
,過點(diǎn)
作
于
,連接
,證明
即可;
(2)以
為原點(diǎn),
為
軸,
為
軸,建立空間直角坐標(biāo)系
,求出平面
的法向量
,平面
的法向量
,計(jì)算
即可.
解:(1)證明:過點(diǎn)
作
,垂足為
,過點(diǎn)
作
于
,連接
,如圖所示;
![]()
∵平面
平面
,平面
平面
,∴
平面
,
,
∴
;
由題意知
,
∴
,
∴四邊形
是平行四邊形,
∴
;
又
平面
,
平面
,
∴
平面
;
(2)由已知,
、
互相垂直,以
為原點(diǎn),
為
軸,
為
軸,建立空間直角坐標(biāo)系
,如圖所示;
![]()
則
,
,
,
,
,
設(shè)平面
的法向量為
,
則
,
即
,
令
,則
,
,
∴
;
設(shè)平面
的法向量為
,則
,
易求得
;
又
,
∴二面角
的平面角余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)當(dāng)a=1 時(shí),求不等式f(x)≤5的解集;
(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(
)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
|
|
|
|
|
|
|
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于
,
的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天的經(jīng)濟(jì)損失
(單位:元)與空氣質(zhì)量指數(shù)
的關(guān)系式為
,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
(
).
(1)討論
的單調(diào)性;
(2)證明:當(dāng)
時(shí),
.
(3)證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
,圓
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求
的極坐標(biāo)方程;
(2)若直線
的極坐標(biāo)方程為
,設(shè)
的交點(diǎn)為A,B,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),其中
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程;
(2)已知點(diǎn)
,
與
交于點(diǎn)
,與
交于
兩點(diǎn),且
,求
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—5:不等式選講]
已知函數(shù)
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)若不等式
的解集包含
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線C:y2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( )
A. 4B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com