欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$+$\overrightarrow$=(5,-10),$\overrightarrow{a}$-$\overrightarrow$=(3,6),則$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值為(  )
A.-$\frac{\sqrt{13}}{13}$B.$\frac{\sqrt{13}}{13}$C.-$\frac{2\sqrt{13}}{13}$D.$\frac{2\sqrt{13}}{13}$

分析 設(shè)出$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo),利用$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$列出方程,求出$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo),再求$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值.

解答 解:設(shè)$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),
∵$\overrightarrow{a}$+$\overrightarrow$=(5,-10),$\overrightarrow{a}$-$\overrightarrow$=(3,6),
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=5}\\{{x}_{1}{-x}_{2}=3}\end{array}\right.$,且$\left\{\begin{array}{l}{{y}_{1}{+y}_{2}=-10}\\{{y}_{1}{-y}_{2}=6}\end{array}\right.$,
解得x1=4,x2=1,y1=-2,y1=-8,
∴$\overrightarrow{a}$=(4,-2),$\overrightarrow$=(1,-8);
∴$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值為
cos<$\overrightarrow{a}$,$\overrightarrow$>$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|×|\overrightarrow|}$=$\frac{4×1+(-2)×(-8)}{\sqrt{{4}^{2}{+(-2)}^{2}}×\sqrt{{1}^{2}{+(-8)}^{2}}}$=$\frac{2\sqrt{13}}{13}$.
故選:D.

點(diǎn)評 本題考查了平面向量的坐標(biāo)表示以及求向量夾角的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若集合A=[-1,1),當(dāng)S分別取下列集合時(shí),求∁sA.
①S=R;
②S=(-∞,2];
③S=[-4,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知M={x|y=x2+1},N={y|y=x2+1},則∁MN等于(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個(gè)函數(shù):①y=$\frac{x}{x-1}$;②y=x2+x;③y=-(x+1)2;④y=$\frac{x}{1-x}$+2,其中在(-∞,0)上為減函數(shù)的是(  )
A.B.C.①④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,若asinBcosC+csinBcosA=$\frac{1}{2}$b,且ac=4,則△ABC的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓c1:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1作垂直于x軸的直線l1,直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M
(1)求點(diǎn)M的軌跡C2的方程
(2)過點(diǎn)F2作兩條互相垂直的直線AC,BD,且分別交橢圓于A,B,C,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓的中心在原點(diǎn)焦點(diǎn)在x軸上離心率是$\frac{\sqrt{5}}{5}$,且過點(diǎn)P(-5,4),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線${∫}_{-\sqrt{2}}^{2}$(-$\sqrt{2-{x}^{2}}$)dx(  )
A.-2πB.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知cosαcosβ=cosα+cosβ+3,則sin(α+β)=0.

查看答案和解析>>

同步練習(xí)冊答案