【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數(shù)f(x)零點(diǎn)個(gè)數(shù);
(2)若對(duì)x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)=
必有一個(gè)實(shí)數(shù)根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件
①當(dāng)x=﹣1時(shí),函數(shù)f(x)有最小值0;
②對(duì)任意x∈R,都有0≤f(x)﹣x≤
若存在,求出a,b,c的值,若不存在,請(qǐng)說明理由.
【答案】
(1)解:∵f(﹣1)=0,
∴a﹣b+c=0即b=a+c,
故△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2
當(dāng)a=c時(shí),△=0,函數(shù)f(x)有一個(gè)零點(diǎn);
當(dāng)a≠c時(shí),△>0,函數(shù)f(x)有兩個(gè)零點(diǎn)
(2)解:令g(x)=f(x)﹣
,
∵g(x1)=f(x1)﹣
= ![]()
g(x2)=f(x2)﹣
= ![]()
∴g(x1)g(x2)= ![]()
∵f(x1)≠f(x2),
故g(x1)g(x2)<0
∴g(x)=0在(x1,x2)內(nèi)必有一個(gè)實(shí)根.
即方程f(x)=
必有一個(gè)實(shí)數(shù)根屬于(x1,x2)
(3)解:假設(shè)a,b,c存在,由①得
=﹣1,
=0
∴b=2a,c=a.
由②知對(duì)任意x∈R,都有0≤f(x)﹣x≤ ![]()
令x=1得0≤f(1)﹣1≤0
∴f(1)=1
∴a+b+c=1
解得:a=c=
,b=
,
當(dāng)a=c=
,b=
時(shí),f(x)=
x2+
x+
=
(x+1)2,其頂點(diǎn)為(﹣1,0)滿足條件①,
又f(x)﹣x=
x2﹣
x+
=
(x﹣1)2,對(duì)任意x∈R,都有0≤f(x)﹣x≤
,滿足條件②.
∴存在a=c=
,b=
,使f(x)同時(shí)滿足條件①、②.
【解析】(1)通過對(duì)二次函數(shù)對(duì)應(yīng)方程的判別式進(jìn)行分析判斷方程根的個(gè)數(shù),從而得到零點(diǎn)的個(gè)數(shù);(2)若方程f(x)=
必有一個(gè)實(shí)數(shù)根屬于(x1 , x2),則函數(shù)g(x)=f(x)﹣
在(x1 , x2)必有一零點(diǎn),進(jìn)而根據(jù)零點(diǎn)存在定理,可以證明(3)根據(jù)條件①和二次函數(shù)的圖象和性質(zhì),可得b=2a,c=a,令x=1,結(jié)合條件②,可求出a,b,c的值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和函數(shù)的零點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)
時(shí),拋物線開口向上,函數(shù)在
上遞減,在
上遞增;當(dāng)
時(shí),拋物線開口向下,函數(shù)在
上遞增,在
上遞減;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比為負(fù)值的等比數(shù)列{an}中,a1a5=4,a4=﹣1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
+
+…+
,求數(shù)列{an+bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
在定義域內(nèi)恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在
市的
區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記
表示在各區(qū)開設(shè)分店的個(gè)數(shù),
表示這個(gè)
個(gè)分店的年收入之和.
| 2 | 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合
與
的關(guān)系,求
關(guān)于
的線性回歸方程
;
(2)假設(shè)該公司在
區(qū)獲得的總年利潤(rùn)
(單位:百萬(wàn)元)與
之間的關(guān)系為
,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在
區(qū)開設(shè)多少個(gè)分時(shí),才能使
區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
和定點(diǎn)
,由圓
外一點(diǎn)
向圓
引切線
,切點(diǎn)為
,且滿足
.
(1)求實(shí)數(shù)
,
滿足的等量關(guān)系;
(2)求線段
長(zhǎng)的最小值;
(3)若以
為圓心所作的圓
與圓
有公共點(diǎn),試求半徑取最小值時(shí)圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
=(1,2),
=(2,﹣2).
(1)設(shè)
=4
+
,求
;
(2)若
+
與
垂直,求λ的值;
(3)求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=﹣x+5上,求圓C的方程;
(2)在(1)的條件下,過點(diǎn)A作圓C的切線,求切線的方程;
(3)若圓C上存在點(diǎn)M,使|MA|=|MO|,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)
及橢圓
,過點(diǎn)
的動(dòng)直線與橢圓相交于
,
兩點(diǎn).
(1)若線段
中點(diǎn)的橫坐標(biāo)是
,求直線
的方程;
(2)設(shè)點(diǎn)
的坐標(biāo)為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體
中,四邊形
為平行四邊形,
平面
,且
,
,
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)若直線
與平面
所成的角的正弦值為
,求
的值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com