欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知 f(x)=2lnx-ax+1(a∈R).
(Ⅰ)若a>0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若 f(x)有兩個(gè)不同零點(diǎn) x1、x2 (x2>x1),f'(x)為 f(x)的導(dǎo)函數(shù),求證:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0.

分析 (Ⅰ)函數(shù)f(x)的定義域?yàn)閧x|x>0},f′(x)=$\frac{2}{x}$-a,當(dāng)x$∈(0,\frac{2}{a})$時(shí)f′(x)>0,x$∈(\frac{2}{a},+∞)$時(shí),f′(x)<0即可得到單調(diào)區(qū)間.
(Ⅱ)由(Ⅰ)得要使 f(x)有兩個(gè)不同零點(diǎn) x1、x2,則a>0,可得2lnx1-ax1+1=0,2lnx2-ax2+1=0⇒a=$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$,$f′(\frac{{x}_{1}+2{x}_{2}}{2})$=$\frac{4}{{x}_{1}+2{x}_{2}}$-$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{{x}_{1}-{x}_{2}}$[$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)],要證證:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0,只需證$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)>0.即證$\frac{4(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+2}-2ln\frac{{x}_{1}}{{x}_{2}}$>0,令$\frac{{x}_{1}}{{x}_{2}}=t,(0<t<1)$,g(t)=$\frac{4(t-1)}{t+2}-2lnt$(0<t<1),利用導(dǎo)數(shù)即可得證.

解答 解:(Ⅰ)函數(shù)f(x)的定義域?yàn)閧x|x>0},f′(x)=$\frac{2}{x}$-a
令f′(x)=$\frac{2}{x}$-a=0,解得x=$\frac{2}{a}$>0
當(dāng)x$∈(0,\frac{2}{a})$時(shí)f′(x)>0,x$∈(\frac{2}{a},+∞)$時(shí),f′(x)<0
∴函數(shù)f(x)的單增區(qū)間(0,$\frac{2}{a}$):f(x)的單減區(qū)間:($\frac{2}{a}$,+∞),
(Ⅱ)由(Ⅰ)得要使 f(x)有兩個(gè)不同零點(diǎn) x1、x2,則a>0,
可得2lnx1-ax1+1=0,2lnx2-ax2+1=0,
⇒a=$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$,
∴$f′(\frac{{x}_{1}+2{x}_{2}}{2})$=$\frac{4}{{x}_{1}+2{x}_{2}}$-$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{{x}_{1}-{x}_{2}}$[$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)],
要證證:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0,只需證$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)>0.
即證$\frac{4(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+2}-2ln\frac{{x}_{1}}{{x}_{2}}$>0,
令$\frac{{x}_{1}}{{x}_{2}}=t,(0<t<1)$,
g(t)=$\frac{4(t-1)}{t+2}-2lnt$,(0<t<1).
g′(t)=$\frac{-2({t}^{2}-2t+4)}{(t+2)^{2}t}<0$,
∴g(t)在(0,1)上單調(diào)遞增,g(1)=0,
∴g(t)<0.
故f'($\frac{{{x_1}+2{x_2}}}{2}$)<0.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)求最值、單調(diào)性,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)復(fù)數(shù)z滿足3+i=z(2-i),則z=( 。
A.2-iB.2+iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在平面上,如果兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,這兩個(gè)多邊形叫做相似多邊形,若兩個(gè)相似三角形的邊長(zhǎng)比為1:2.則它們的面積之比為1:4.類(lèi)似地,在空間中,如果面數(shù)相同的多面體的對(duì)應(yīng)面相似,有相同的相似比且對(duì)應(yīng)多面角相等,那么這兩個(gè)多面體叫相似多面體;若兩個(gè)相似四面體的棱長(zhǎng)比為1:2,則它們的體積比為(  )
A.1:2B.1:4C.1:6D.1:8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知復(fù)數(shù)z滿足(1+i)•z=2-i(i為虛數(shù)單位),則復(fù)數(shù)z為(  )
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{1}{2}$-$\frac{3}{2}$iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某公司為確定下一年度投入某產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x對(duì)年銷(xiāo)售額y(單位:萬(wàn)元)的影響,對(duì)近6年的年宣傳費(fèi)xi和年銷(xiāo)售額yi(i=1,2,…6)數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)xi和年銷(xiāo)售額yi具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值
 $\overline{x}$ $\overline{y}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$
 6 500 20 1300
(Ⅰ)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的回歸方程
(Ⅱ)利用(Ⅰ)中的回歸方程預(yù)測(cè)該公司如果對(duì)該產(chǎn)品的宣傳費(fèi)支出為10萬(wàn)元時(shí)是銷(xiāo)售額
附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為.$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2sin2x-1.
(1)求函數(shù)f(x)的對(duì)稱(chēng)中心和單調(diào)遞減區(qū)間;
(2)若將函數(shù)f(x)圖象上每一點(diǎn)的橫坐標(biāo)都縮短到原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),然后把所得圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.為考察數(shù)學(xué)成績(jī)與物理成績(jī)的關(guān)系,在高二隨機(jī)抽取了300名學(xué)生,統(tǒng)計(jì)數(shù)據(jù)如下表
數(shù)學(xué)
物理
85~100分85分以下合計(jì)
85~100分3785122
85分以下35143178
合計(jì)72228300
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
經(jīng)計(jì)算K2≈4.514,現(xiàn)判斷數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系,則判斷出錯(cuò)的概率不會(huì)超過(guò)( 。
A.0.5%B.1%C.2%D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)幾何體的三視圖形狀都相同,大小均相等,那么這個(gè)幾何體可以是( 。
A.圓柱B.三棱柱C.圓錐D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)比較$\sqrt{7}+\sqrt{10}$與$\sqrt{3}+\sqrt{14}$的大;
(2)解關(guān)于x的不等式x2-(a+2)x+2a<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案