【題目】已知函數(shù)
在
處的切線方程為
.
(1)求函數(shù)
的解析式;
(2)若關(guān)于
的方程f(x)=kex(其中e為自然對(duì)數(shù)的底數(shù))恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)
的值.
【答案】(1)
(2)
或![]()
【解析】
(1)求出原函數(shù)的導(dǎo)函數(shù),依題意,
,得到關(guān)于a,b的不等式組,求得a,b的值,則函數(shù)解析式可求;
(2)方程f(x)=kex,即x2﹣x+1=kex,得k=(x2﹣x+1)e﹣x,記F(x)=(x2﹣x+1)e﹣x,利用導(dǎo)數(shù)求其極值,可知當(dāng)k
或k
時(shí),它們有兩個(gè)不同交點(diǎn),因此方程f(x)=kex恰有兩個(gè)不同的實(shí)根;
(1)f(x)=ax2+bx+1,
,
依題設(shè),有
,即
,
解得
,∴
.
(2)方程f(x)=kex,即x2﹣x+1=kex,,可化為
,
記
,則
,
令
,得
,![]()
當(dāng)
變化時(shí),
、
的變化情況如下表:
|
|
|
|
|
|
| - |
| + |
| - |
| ↘ | 極小 | ↗ | 極大 | ↘ |
所以當(dāng)
時(shí),
取極小值
;當(dāng)
時(shí),
取極大值
,
又
時(shí),
,且
;
時(shí),
,
可知當(dāng)k
或k
時(shí),它們有兩個(gè)不同交點(diǎn),因此方程f(x)=kex恰有兩個(gè)不同的實(shí)根;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線
與橢圓
在第一象限內(nèi)的交點(diǎn)是
,點(diǎn)
在
軸上的射影恰好是橢圓
的右焦點(diǎn)
,橢圓
另一個(gè)焦點(diǎn)是
,且
.
(1)求橢圓
的方程;
(2)直線
過(guò)點(diǎn)
,且與橢圓
交于
兩點(diǎn),求
的內(nèi)切圓面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
和直線
,直線
過(guò)直線
上的動(dòng)點(diǎn)
且與直線
垂直,線段
的垂直平分線
與直線
相交于點(diǎn)![]()
![]()
(I)求點(diǎn)
的軌跡
的方程;
(II)設(shè)直線
與軌跡
相交于另一點(diǎn)
,與直線
相交于點(diǎn)
,求
的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)若
,令
,若
,
是
的兩個(gè)極值點(diǎn),且
,求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:萬(wàn)元)對(duì)年銷售量
(單位:噸)和年利潤(rùn)
(單位:萬(wàn)元)的影響.對(duì)近六年的年宣傳費(fèi)
和年銷售量
(
)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 |
|
|
|
|
|
|
年宣傳費(fèi) |
|
|
|
|
|
|
年銷售量 |
|
|
|
|
|
|
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)
(萬(wàn)元)與年銷售量
(噸)之間近似滿足關(guān)系式
(
).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
|
|
|
|
|
|
|
|
(1)根據(jù)所給數(shù)據(jù),求
關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)
與
,
的關(guān)系為
若想在
年達(dá)到年利潤(rùn)最大,請(qǐng)預(yù)測(cè)
年的宣傳費(fèi)用是多少萬(wàn)元?
附:對(duì)于一組數(shù)據(jù)
,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計(jì)分別為
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐
,從
、
、
三點(diǎn)及各棱中點(diǎn)共9個(gè)點(diǎn)中任取不共面4點(diǎn),共______種不同的取法.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知數(shù)列
:1,
,
,3,3,3,
,
,
,
,…,
,即當(dāng)
(
)時(shí),
,記
(
).
(1)求
的值;
(2)求當(dāng)
(
),試用n、k的代數(shù)式表示
(
);
(3)對(duì)于
,定義集合
是
的整數(shù)倍,
,且
,求集合
中元素的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)求函數(shù)
在區(qū)間
上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)判斷函數(shù)
的單調(diào)性;
(2)若函數(shù)
有極大值點(diǎn)
,求證:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com