欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=x-m(x+1)ln(x+1),(x>-1,m≥0)
(1)求f(x)的單調區(qū)間;
(2)當m=1時,若直線y=t與函數f(x)在[-
12
,1]
上的圖象有兩個交點,求實數t的取值范圍;
(3)證明:當a>b>0時,(1+a)b<(1+b)a
分析:(1)首先求出函數的導數,然后令f′(x)=0,解出函數的極值點,最后根據導數判斷函數的單調性,從而求解.
(2)由(1)求出f(x)的單調區(qū)間,由題意直線y=t與函數f(x)在[-
1
2
,1]
上的圖象有兩個交點等價于方程f(x)=t在[-
1
2
,1]
上有兩個實數解,從而求出實數t的取值范圍;
(3)只需證bln(1+a)<aln(1+b),只需證:
ln(1+a)
a
ln(1+b)
b
,設g(x)=
ln(1+x)
x
,(x>0)
則利用函數的單調性進行證明.
解答:解:(1)f'(x)=1-mln(x+1)-m
=1 ①m=0時,f'(x)=1>0,
∴f(x)在定義域(-1,+∞)是增函數(2分)
=2 ②m>0時,令f'(x)>0得mln(x+1)<1-m,∴-1<x<e
1-m
m
-1

∴f(x)在[-1,e
1-m
m
-1]
上單調遞增,在[e
1-m
m
-1,+∞)
上單調遞減(4分)
(2)直線y=t與函數f(x)在[-
1
2
,1]
上的圖象有兩個交點等價于方程f(x)=t在[-
1
2
,1]
上有兩個實數解(5分)
由(I)知,f(x)在[-
1
2
,0]
上單調遞增,在[0,1]上單調遞減.
f(0)=0,f(1)=1-ln4,f(-
1
2
)=-
1
2
+
1
2
ln2
,且f(1)<f(-
1
2
)
(7分)
∴當t∈[-
1
2
+
1
2
ln2,0)
時,方程f(x)=t有兩個不同解,
即直線y=t與函數f(x)在[-
1
2
,1]
上的圖象有兩個交點(8分)
(3)要證:(1+a)b<(1+b)a
只需證bln(1+a)<aln(1+b),只需證:
ln(1+a)
a
ln(1+b)
b
(10分)
g(x)=
ln(1+x)
x
,(x>0)
g′(x)=
x
1+x
-ln(1+x)
x2
=
x-(1+x)ln(1+x)
x2(1+x)
.(12分)
由(I)知x-(1+x)ln(1+x)在(0,+∞)單調遞減,∴x-(1+x)ln(1+x)<0即g(x)是減函數,而a>b
∴g(a)<g(b),故原不等式成立(14分)
點評:此題主要考查對數函數的導數,函數單調性的判定,函數最值,函數、方程與不等式等基礎知識,一般出題者喜歡考查學生的運算求解能力、推理論證能力及分析與解決問題的能力,要出學生會用數形結合的思想、分類與整合思想,化歸與轉化思想、有限與無限的思想來解決問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案