欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.設(shè)函數(shù)f(x),若對(duì)于在定義域內(nèi)存在實(shí)數(shù)x滿足f(-x)=-f(x),則稱函數(shù)f(x)為“局部奇函數(shù)”.若函數(shù)f(x)=4x-m•2x+m2-3是定義在R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是(  )
A.[1-$\sqrt{3}$,1+$\sqrt{3}$)B.[-1,2)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-2$\sqrt{2}$,1-$\sqrt{3}$]

分析 根據(jù)“局部奇函數(shù)”,可知函數(shù)f(-x)=-f(x)有解即可,結(jié)合指數(shù)函數(shù)的性質(zhì),利用換元法進(jìn)行求解.

解答 解:根據(jù)“局部奇函數(shù)”的定義可知,函數(shù)f(-x)=-f(x)有解即可,
即f(-x)=4-x-m•2-x+m2-3=-(4x-m2x+m2-3),
∴4x+4-x-m(2x+2-x)+2m2-6=0,
即(2x+2-x2-m?(2x+2-x)+2m2-8=0有解即可.
設(shè)t=2x+2-x,則t=2x+2-x≥2,
∴方程等價(jià)為t2-m?t+2m2-8=0在t≥2時(shí)有解,
設(shè)g(t)=t2-m?t+2m2-8,
對(duì)稱軸x=$\frac{m}{2}$,
①若m≥4,則△=m2-4(2m2-8)≥0,
即7m2≤32,此時(shí)m不存在;
②若m<4,要使t2-m?t+2m2-8=0在t≥2時(shí)有解,
則$\left\{\begin{array}{l}{m<4}\\{{m}^{2}-m-2≤0}\\{△≥0}\end{array}\right.$,解得-1≤m<2,
綜上:-1≤m<2,
故選B

點(diǎn)評(píng) 本題主要考查函數(shù)的新定義,利用函數(shù)的新定義得到方程有解的條件,利用換元法將方程轉(zhuǎn)化為一元二次方程有解的問題去解決是解決本題的關(guān)鍵.綜合考查了二次函數(shù)的圖象和性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=4sinxcos(x+\frac{π}{3})+\sqrt{3}$,$x∈[{0,\frac{π}{6}}]$.
(1)求函數(shù)f(x)的值域;
(2)已知銳角△ABC的兩邊長a,b分別為函數(shù)f(x)的最小值與最大值,且△ABC的外接圓半徑為$\frac{{3\sqrt{2}}}{4}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定積分${∫}_{0}^{1}$[$\sqrt{1{-(x-1)}^{2}}$-x]dx等于( 。
A.$\frac{π-2}{4}$B.$\frac{π}{2}$-1C.$\frac{π-1}{4}$D.$\frac{π-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件f(-x+1)=f(x+1),f(2)=0,且方程f(x)=x有兩相等實(shí)根.
(1)求a,b,c
(2)是否存在實(shí)數(shù)m,n(m<n),使得函數(shù)f(x)在定義域?yàn)閇m,n]時(shí),值域?yàn)閇3m,3n].如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.向量$\overrightarrow a$、$\overrightarrow b$滿足|$\overrightarrow a$|=2,|$\overrightarrow b$|=$\sqrt{2}$,($\overrightarrow a$+$\overrightarrow b$)⊥(2$\overrightarrow a$-$\overrightarrow b$),若θ為$\overrightarrow a$與$\overrightarrow b$的夾角,則cosθ=$-\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.觀察(x2)'=2x,(x4)'=4x3,(x6)'=6x5,(cosx)'=-sinx.由歸納推理可得:若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(-x)=( 。
A.f(x)B.-f(x)C.g(x)D.-g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x>2,求f(x)=x+$\frac{1}{x-2}$的最小值4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足0<x<y,且 x+y=1,則下列四個(gè)數(shù)中最大的是( 。
A.$\frac{1}{2}$B.x2+y2C.2xyD.x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.cos70°sin80°+cos20°sin10°=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案