分析 利用換元法,將方程轉(zhuǎn)化為關(guān)于t的一元二次方程,利用判別式和根與系數(shù)之間的關(guān)系即可得到結(jié)論.
解答 解:設(shè)t=f(x),則當t=0時,f(x)=0,只有一解,
當t>0時,f(x)=t,有兩個解,
則方程a[f(x)]2-f(x)+1=0有四個不同的實數(shù)解
等價為at2-t+1=0(a≠0)有兩個不同的正解,
即$\left\{\begin{array}{l}{△=1-4a>0}\\{{t}_{1}+{t}_{2}=\frac{1}{a}>0}\\{{t}_{1}{t}_{2}=\frac{1}{a}>0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a<\frac{1}{4}}\\{a>0}\end{array}\right.$,解得0<a<$\frac{1}{4}$,
故答案為:(0,$\frac{1}{4}$).
點評 本題主要考查根的存在性的應(yīng)用,利用換元法將方程進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,-1) | B. | (1,+∞) | C. | (-1,1)∪(1,+∞) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com