已知函數(shù)
,曲線
在點(diǎn)
處的切線是
:
(Ⅰ)求
,
的值;
(Ⅱ)若
在
上單調(diào)遞增,求
的取值范圍
(Ⅰ)
,
;(Ⅱ)
解析試題分析:(Ⅰ)先求出已知函數(shù)的導(dǎo)函數(shù),根據(jù)切線方程就可以知道曲線在
的函數(shù)值和切線斜率,代入函數(shù)以及其導(dǎo)函數(shù)的解析式求解;(Ⅱ)先由(Ⅰ)得到函數(shù)及其導(dǎo)函數(shù)的只含有一個(gè)參數(shù)
的解析式,然后根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系將問題轉(zhuǎn)化為
在
上的恒成立問題,進(jìn)行分類討論解不等式即可
試題解析:解:(Ⅰ) 由已知得
, 2分
因?yàn)榍
在點(diǎn)
處的切線是
:
,
所以
,
,即
,
6分
(Ⅱ)由(Ⅰ)知
,
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/4/169zu2.png" style="vertical-align:middle;" />在
上單調(diào)遞增,所以
在
上恒成立 8分
當(dāng)
時(shí),
在
上單調(diào)遞增,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/0/oaeah1.png" style="vertical-align:middle;" />,所以
在
上恒成立 10分
當(dāng)
時(shí),要使得
在
上恒成立,那么
,
解得
12分
綜上可知,
14分
考點(diǎn):1、利用導(dǎo)數(shù)研究函數(shù)的切線方程;2、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系3、分類討論思想
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù),
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若
,求
的單調(diào)區(qū)間;
(3)若
,函數(shù)
的圖象與函數(shù)
的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若
在區(qū)間
上是減函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)
是二次函數(shù),當(dāng)
時(shí),
有極值,且極大值為2,
.
(1)求函數(shù)
的解析式;
(2)
有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若存在實(shí)數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=![]()
+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a≥2時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意
及任意
,
∈[1,2],恒有
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
為正常數(shù).
(Ⅰ)若
,且
,求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)若
,且對(duì)任意
都有
,求
的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知![]()
(1)若
時(shí),求函數(shù)
在點(diǎn)
處的切線方程;
(2)若函數(shù)
在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(3)令
是否存在實(shí)數(shù)
,當(dāng)
是自然對(duì)數(shù)的底)時(shí),函數(shù)
的最小值是3,
若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(Ⅲ)求證:
(
,e是自然對(duì)數(shù)的底數(shù)).
提示:![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com