分析 (1)由原直角三角形中,AD是斜邊BD上的高,得到AD與DB、DC都垂直,利用線面垂直的判定得到AD垂直于面BDC,由線面垂直的性質(zhì)得到要證得結(jié)論;
(2)由原題給出的邊的長度,通過解直角三角形分別求出三角形ABC三邊的長度,然后利用余弦定理求解∠BAC的大。
(3)證明AD⊥平面BDC即可判定AD是A到平面BDC的距離;
(4)取BC中點E,連結(jié)AE、DE后證明平面ADE和平面ABC垂直,在面ADE中作出D與平面ABC的垂線,在直角三角形ADE中,由等積法求得點D到平面ABC的距離.
解答
(1)證明:如圖,
∵AD⊥BC,AD⊥DC,BD∩DC=D,
∴AD⊥平面BDC.
又AD?平面ABD,
∴平面ABD⊥平面BDC;
(2)證明:在原Rt△ABC中,AB=AC=$\sqrt{2}$,
∴BC=2,
∴BD=DC=1,又折疊后∠BDC=90°,
∴△BDC為等腰Rt△,
∴BC=$\sqrt{2}$,
∴AB=BC=AC,∴∠BAC=60°;
(3)在△ABC中,易得AD=$\frac{1}{2}$BC=1,
由(1)知AD⊥平面BDC,
即AD是A到平面BDC的距離,
即A到平面BDC的距離是1.
(4)解:取BC的中點E,
∵AB=AC,BD=DC,
∴DE⊥BC,AE⊥BC,
∴BC⊥平面ADE,過D點作DM⊥AE,則DM⊥平面ABC.
在Rt△ADE中,AD=1,DE=$\frac{\sqrt{2}}{2}$,
∴$\frac{\sqrt{6}}{2}$,
∴斜邊AE上的高DM=$\frac{AD•DE}{AE}=\frac{1×\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}}$=$\frac{\sqrt{3}}{3}$.
∴D點到平面ABC的距離為$\frac{\sqrt{3}}{3}$.
點評 本題考查了平面與平面垂直的判定,考查了點線面間距離的計算,考查了學(xué)生的空間想象能力和思維能力,解答的關(guān)鍵是對折疊問題折疊前后的變量與不變量的掌握,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\root{3}{4V}$ | B. | $\root{3}{6V}$ | C. | $\root{3}{8V}$ | D. | $\sqrt{4V}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com