已知
是公差不為零的等差數(shù)列,
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng);
(2)記
,求數(shù)列
的前
項(xiàng)和![]()
(1)
;(2)![]()
解析試題分析:(1)設(shè)公差為
,則:
2分
解得:![]()
6分
(2) ∵
,
12分
考點(diǎn):本題考查了數(shù)列的通項(xiàng)及前N項(xiàng)和的求法
點(diǎn)評:數(shù)列的通項(xiàng)公式及應(yīng)用是數(shù)列的重點(diǎn)內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對數(shù)列考查的一個(gè)亮點(diǎn),也是一種趨勢.隨著新課標(biāo)實(shí)施的深入,高考關(guān)注的重點(diǎn)為等差、等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法、裂項(xiàng)相消法等求數(shù)列的前n項(xiàng)的和等等
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
)已知數(shù)列
是等差數(shù)列,其前n項(xiàng)和為
,
,
(I)求數(shù)列
的通項(xiàng)公式;
(II)設(shè)p、q是正整數(shù),且p≠q. 證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是首項(xiàng)為
,公比
的等比數(shù)列. 設(shè)![]()
,數(shù)列
滿足
.
(Ⅰ)求證:數(shù)列
成等差數(shù)列;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知等差數(shù)列{
}的前n項(xiàng)和為Sn,且![]()
=![]()
(1)求通項(xiàng)
;
(2)求數(shù)列{
}的前n項(xiàng)和的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
等差數(shù)列
中,
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
為遞減的等差數(shù)列,
是數(shù)列
的前
項(xiàng)和,且
.
⑴ 求數(shù)列
的前
項(xiàng)和![]()
⑵ 令
,求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是等差數(shù)列,且![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
求數(shù)列
的前項(xiàng)n和公式
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知等差數(shù)列
中,前5項(xiàng)和前10項(xiàng)的和分別為25和100。數(shù)列
中,
。
(1)求
、
;
(2)設(shè)
,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(8分)已知等差數(shù)列
中,
,
.
(1)求數(shù)列
的通項(xiàng)公式; (4分)
(2)若數(shù)列
的前
項(xiàng)和
,求
的值. (4分)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com