已知兩點(diǎn)
,直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為
.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓
(
)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).
(Ⅰ)
(
);(Ⅱ)
.
解析試題分析:(Ⅰ)設(shè)點(diǎn)
的坐標(biāo)為
則,
,化簡(jiǎn)可得軌跡方程.
(Ⅱ)設(shè)出直線PE、PF的點(diǎn)斜式方程,分別求出它們與圓
(
)相切條件下與曲線C的另一交個(gè)交點(diǎn)Q、R.的坐標(biāo),寫出直線
的方程,點(diǎn)到直線的距離公式可求
的底邊
上的高.進(jìn)而得出
面積的表達(dá)式,再探索用基本不等式求該式最值的方法.
試題解析:(Ⅰ)設(shè)點(diǎn)
,
2分
整理得點(diǎn)M所在的曲線C的方程:
(
) 3分![]()
(Ⅱ)由題意可得點(diǎn)P(
) 4分
因?yàn)閳A
的圓心為(1,0),
所以直線PE與直線PF的斜率互為相反數(shù)
----------5分
設(shè)直線PE的方程為
,
與橢圓方程聯(lián)立消去
,得:
, 6分
由于
1是方程的一個(gè)解,
所以方程的另一解為
7分
同理
8分
故直線RQ的斜率為
=
9分
把直線RQ的方程
代入橢圓方程,消去
整理得![]()
所以
10分
原點(diǎn)O到直線RQ的距離為
11分
. 12分
考點(diǎn):1、動(dòng)點(diǎn)軌跡方程的求法;2、直線與圓、圓錐曲線的位置關(guān)系;3、基本不等式的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)
的橢圓C:
的一個(gè)焦點(diǎn)為F1(0,3),M(x,4)(x>0)為橢圓C上一點(diǎn),△MOF1的面積為
.
(1) 求橢圓C的方程;
(2) 是否存在平行于OM的直線l,使得直線l與橢圓C相交于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
:![]()
.
(1)若曲線
是焦點(diǎn)在
軸上的橢圓,求
的取值范圍;
(2)設(shè)
,過點(diǎn)
的直線
與曲線
交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
為直角三角形,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
上的點(diǎn)到其兩焦點(diǎn)距離之和為
,且過點(diǎn)
.
(Ⅰ)求橢圓方程;
(Ⅱ)
為坐標(biāo)原點(diǎn),斜率為
的直線過橢圓的右焦點(diǎn),且與橢圓交于點(diǎn)
,
,若
,求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
在拋物線
:
上.
(1)若
的三個(gè)頂點(diǎn)都在拋物線
上,記三邊
,
,
所在直線的斜率分別為
,
,
,求
的值;
(2)若四邊形
的四個(gè)頂點(diǎn)都在拋物線
上,記四邊
,
,
,
所在直線的斜率分別為
,
,
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)
及直線
,曲線
是滿足下列兩個(gè)條件的動(dòng)點(diǎn)
的軌跡:①
其中
是
到直線
的距離;②![]()
(1) 求曲線
的方程;
(2) 若存在直線
與曲線
、橢圓
均相切于同一點(diǎn),求橢圓
離心率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(
)的右焦點(diǎn)為
,離心率為
.
(Ⅰ)若
,求橢圓的方程;
(Ⅱ)設(shè)直線
與橢圓相交于
,
兩點(diǎn),
分別為線段
的中點(diǎn). 若坐標(biāo)原點(diǎn)
在以
為直徑的圓上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
為橢圓
的左、右焦點(diǎn),且點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)過
的直線
交橢圓
于
兩點(diǎn),則
的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點(diǎn)為
,準(zhǔn)線為
,點(diǎn)
為拋物線C上的一點(diǎn),且
的外接圓圓心到準(zhǔn)線的距離為
.![]()
(I)求拋物線C的方程;
(II)若圓F的方程為
,過點(diǎn)P作圓F的2條切線分別交
軸于點(diǎn)
,求
面積的最小值時(shí)
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com