(本題滿分14分)如圖,四邊形ABCD中,
為正三角形,
,
,AC與BD交于O點(diǎn).將
沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為
,且P點(diǎn)在平面ABCD內(nèi)的射影落在
內(nèi).
![]()
(Ⅰ)求證:
平面PBD;
(Ⅱ)若已知二面角
的余弦值為
,求
的大小.
(Ⅰ)見解析;(Ⅱ)
.
【解析】本試題主要是考查 了空間幾何體中線面垂直的證明,以及二面角的求解的綜合運(yùn)用。
(1)要證明線面垂直,只要利用線面垂直的判定定理即可,關(guān)鍵是證明則AC垂直于BD,又AC垂直于PO
(2)可以建立空間直角坐標(biāo)系,通過法向量與法向量的夾角求解二面角大小,或者利用三垂線定理求解二面角,從而得到求解。
解:(Ⅰ)易知
為
的中點(diǎn),則
,又
,
又
,
平面
,
所以
平面
(5分)
(Ⅱ)方法一:以
為
軸,
為
軸,過
垂直于
平面
向上的直線為
軸建立如圖所示空間
![]()
直角坐標(biāo)系,則
,![]()
(7分)
易知平面
的法向量為
(8分)
,![]()
設(shè)平面
的法向量為![]()
則由
得,![]()
解得,
,令
,則
(11分)
則![]()
解得,
,即
,即
,
又
,∴![]()
故
.(14分)
方法二:
作
,連接
,
![]()
由(Ⅰ)知
平面
,又
平面
,
∴![]()
,又
,
平面
,
∴![]()
平面
,又
平面
,
∴![]()
![]()
,
∴
即為二面角
的平面角
(8分)
作![]()
于
,由
平面
及
平面
知,
![]()
又
,
平面
,所以
平面![]()
所以
即為直線
與平面
所成的角,即
(10分)
在
中,
,
由![]()
=
知,![]()
,
則
,又
,所以
,故
.(14分)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,
,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),![]()
(1)求證:
;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF//平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說明理由。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
![]()
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形
、
的邊長(zhǎng)都是1,平面![]()
平面
,點(diǎn)
在
上移動(dòng),點(diǎn)
在
上移動(dòng),若
(
)
![]()
(I)求
的長(zhǎng);
(II)
為何值時(shí),
的長(zhǎng)最;
(III)當(dāng)
的長(zhǎng)最小時(shí),求面
與面
所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,
,又E、F分別是C1A和C1B的中點(diǎn)。
(1)求證:EF//平面ABC;
(2)求證:平面
平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com