設(shè)數(shù)列
的前
項和為
,對一切
,點
都在函數(shù)
的圖象上.
(Ⅰ)求
的值,猜想
的表達式,并用數(shù)學(xué)歸納法證明;
(Ⅱ)將數(shù)列
依次按1項、2項、3項、4項循環(huán)地分為(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為
,求
的值;
思路點撥:(本題將函數(shù)與數(shù)列知識交匯在一起,考查了觀察、歸納、猜想、用數(shù)學(xué)歸納法證明的方法,考查了等差數(shù)列、等差數(shù)列的求和公式,考查了同學(xué)們觀察問題、解決問題的能力。(1)將點
代入函數(shù)
中,通過整理得到
與
的關(guān)系,則
可求;(2)通過觀察發(fā)現(xiàn)
是第25組中第4個括號內(nèi)各數(shù)之和,各組第4個括號中各數(shù)之和構(gòu)成首項為68、公差為80構(gòu)成等差數(shù)列,利用等差數(shù)列求和公式可求.
。
解:(Ⅰ)因為點
在函數(shù)
的圖象上,
故
,所以
.------------------------1分
令
,得
,所以
;
令
,得
,所以
;
令
,得
,所以
.
由此猜想:
.…………………………………………4分
用數(shù)學(xué)歸納法證明如下:
① 當(dāng)
時,有上面的求解知,猜想成立.-------------5分
② 假設(shè)
時猜想成立,即
成立,
則當(dāng)
時,注意到![]()
,
故
,
.
兩式相減,得
,所以
.
由歸納假設(shè)得,
,
故
.
這說明
時,猜想也成立.
由①②知,對一切
,
成立
.……………………………………8分
(Ⅱ)因為
(
),所以數(shù)列
依次按1項、2項、3項、4項循環(huán)地分為(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循環(huán)記為一組.由于每一個循環(huán)含有4個括號, 故
是第25組中第4個括號內(nèi)各數(shù)之和.由分組規(guī)律知,由各組第4個括號中所有第1個數(shù)組成的數(shù)列是等差數(shù)列,且公差為20.同理,由各組第4個括號中所有第2個數(shù)、所有第3個數(shù)、所有第4個數(shù)分別組成的數(shù)列也都是等差數(shù)列,且公差均為20.故各組第4個括號中各數(shù)之和構(gòu)成等差數(shù)列,且公差為80.注意到第一組中第4個括號內(nèi)各數(shù)之和是68,
所以
.又
=22,所以
=2010.………………14分
歸納總結(jié):由已知求出數(shù)列的前幾項,做出猜想,然后利用數(shù)學(xué)歸納法證明,是不完全歸納法與數(shù)學(xué)歸納法相結(jié)合的一種重要的解決數(shù)列通項公式問題的方法。證明的關(guān)鍵是根據(jù)已知條件和假設(shè)尋找
與
或
與
間的關(guān)系,使命題得證。
科目:高中數(shù)學(xué) 來源: 題型:
(08年朝陽區(qū)綜合練習(xí)一文)(14分)
設(shè)數(shù)列
的前
項和為
,對一切
,點
在函數(shù)
的圖象上.
(Ⅰ)求
的表達式;
(Ⅱ)將數(shù)列
依次按1項、2項、3項、4項循環(huán)地分為(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為
,求
的值;
(Ⅲ)設(shè)
為數(shù)列
的前
項積,是否存在實數(shù)
,使得不等式
對一切
都成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
設(shè)數(shù)列
的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(Ⅰ)求數(shù)列
與數(shù)列
的通項公式;
(Ⅱ)設(shè)數(shù)列
的前
項和為
,是否存在正整數(shù)
,使得
成立?若存在,找出一個正整數(shù)
;若不存在,請說明理由;
(Ⅲ)記
,設(shè)數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009高考真題匯編3-數(shù)列 題型:解答題
(本小題滿分14分)
設(shè)數(shù)列
的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)記
,設(shè)數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(Ⅲ)設(shè)數(shù)列
的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本題滿分12分)設(shè)數(shù)列
的前
項和為
,對
,都有
成立,
(Ⅰ) 求數(shù)列
的通項公式;
(Ⅱ)設(shè)數(shù)列
,試求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省揚州中學(xué)09-10學(xué)年高二下學(xué)期期中考試(文科) 題型:解答題
設(shè)數(shù)列
的前
項和為
,對一切
,點
在函數(shù)
的圖象上.
(1)求a1,a2,a3值,并求
的表達式;
(2)將數(shù)列
依次按1項、2項、3項、4項循環(huán)地分為(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分別計算各個括號內(nèi)所有項之和,并設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為
,求
的值;w*w^w.k&s#5@u.c~o*m
(3)設(shè)
為數(shù)列
的前
項積,是否存在實數(shù)
,使得不等式
對一切
都成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com