已知a>0且a≠1,
。
(1)判斷函數(shù)f(x)是否有零點(diǎn),若有求出零點(diǎn);
(2)判斷函數(shù)f(x)的奇偶性;
(3)討論f(x)的單調(diào)性并用單調(diào)性定義證明。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知
是定義在
上的奇函數(shù),當(dāng)
時(shí),![]()
(1)求
的解析式;
(2)是否存在負(fù)實(shí)數(shù)
,使得當(dāng)
的最小值是4?如果存在,求出
的值;如果不存在,請說明理由.
(3)對
如果函數(shù)
的圖像在函數(shù)
的圖像的下方,則稱函數(shù)
在D上被函數(shù)
覆蓋.求證:若
時(shí),函數(shù)
在區(qū)間
上被函數(shù)
覆蓋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知偶函數(shù)
滿足:當(dāng)
時(shí),
,
當(dāng)
時(shí),![]()
(1) 求當(dāng)
時(shí),
的表達(dá)式;
(2) 試討論:當(dāng)實(shí)數(shù)
滿足什么條件時(shí),函數(shù)
有4個(gè)零點(diǎn),
且這4個(gè)零點(diǎn)從小到大依次構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)
![]()
(1)判斷函數(shù)的單調(diào)性并證明; (2)是否存在實(shí)數(shù)a使函數(shù)f (x)為奇函數(shù)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)
是奇函數(shù).
(1)求a的值;(2)判斷
的單調(diào)性(不需要寫出理由);
(3)若對任意的
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)探究函數(shù)
的最小值,并確定取得最小值時(shí)x的值. 列表如下, 請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
| x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
| y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知函數(shù)![]()
⑴ 判斷函數(shù)
的單調(diào)性,并利用單調(diào)性定義證
明;
⑵ 求函數(shù)
的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
為偶函數(shù),集合A=
為單元素集合
(I)求
的解析式
(II)設(shè)函數(shù)
,若函數(shù)
在
上單調(diào),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com