(本題滿分15分)
已知函數(shù)
,
是
的導(dǎo)函數(shù)(
為自然對數(shù)的底數(shù))
(Ⅰ)解關(guān)于
的不等式:
;
(Ⅱ)若
有兩個(gè)極值點(diǎn)
,求實(shí)數(shù)
的取值范圍.
(Ⅰ)當(dāng)
時(shí),無解;當(dāng)
時(shí),解集為
;當(dāng)
時(shí),解集為
;(Ⅱ)
。
【解析】
試題分析:解:(Ⅰ)
…………………………2分
…………………………4分
當(dāng)
時(shí),無解;
…………………………5分
當(dāng)
時(shí),解集為
;
…………………………6分
當(dāng)
時(shí),解集為
…………………………7分
(Ⅱ)方法一:若
有兩個(gè)極值點(diǎn)
,則
是方程
的兩個(gè)根
,顯然
,得:
……………………………9分
令
,
…………………………11分
若
時(shí),
單調(diào)遞減且
,
…………………………12分
若
時(shí),當(dāng)
時(shí),
,
在
上遞減,
當(dāng)
時(shí),
,
在
上遞增,
……14分
要使
有兩個(gè)極值點(diǎn),需滿足
在
上有兩個(gè)不同解,
得:
,即:
……………………15分
法二:設(shè)
,
則
是方程
的兩個(gè)根,則
,
…………………………9分
若
時(shí),
恒成立,
單調(diào)遞減,方程
不可能有兩個(gè)根……11分
若
時(shí),由
,得
,
當(dāng)
時(shí),
,
單調(diào)遞增,
當(dāng)
時(shí),
單調(diào)遞減
…………………………13分
,得
…………………………15分
考點(diǎn):一元二次含參不等式的解法。利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值。
點(diǎn)評:(1)解一元二次含參不等式的主要思想是分類討論,常討論的有二次項(xiàng)系數(shù)、兩根的大小和判別式?;(2)第二問方法一的關(guān)鍵是把問題轉(zhuǎn)化為“
有兩個(gè)不同解”,根據(jù)構(gòu)造函數(shù)來求。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價(jià)提高120元后允許顧客有3次抽獎的機(jī)會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個(gè) 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運(yùn)用所學(xué)的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù)
.
(Ⅰ)若函數(shù)
在
上單調(diào)遞增,在
上單調(diào)遞減,求實(shí)數(shù)
的最大值;
(Ⅱ)若
對任意的
,
都成立,求實(shí)數(shù)
的取值范圍.
注:
為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線
與曲線
相切
1)求b的值;
2)若方程
在
上恰有兩個(gè)不等的實(shí)數(shù)根
,求
①m的取值范圍;
②比較
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線
:
(
),焦點(diǎn)為
,直線
交拋物線
于
、
兩點(diǎn),
是線段
的中點(diǎn),
過
作
軸的垂線交拋物線
于點(diǎn)
,
(1)若拋物線
上有一點(diǎn)
到焦點(diǎn)
的距離為
,求此時(shí)
的值;
(2)是否存在實(shí)數(shù)
,使
是以
為直角頂點(diǎn)的直角三角形?若存在,求出
的值;若不存在,說明理由。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)設(shè)
,若
在
上不單調(diào)且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com