如圖,四棱錐
的底面
為一直角梯形,側(cè)面PAD是等邊三角形,其中
,
,平面
底面
,
是
的中點.
(1)求證:
//平面
;
(2)求證:![]()
;
(3)求
與平面
所成角的正弦值。
(1)詳見解析(2)詳見解析(3)
.
【解析】
試題分析:(1)證BE∥平面PAD,可先構(gòu)建平面EBM,證明平面EBM∥平面APD,由面面平行,得到線面平行;
(2)取PD的中點F,連接FE,根據(jù)線面垂直的判定及性質(zhì),及等腰三角形性質(zhì),結(jié)合線面垂直的判定定理可得AF⊥平面PDC,又由BE∥AF,可得BE⊥平面PDC;
(3)證明AF⊥平面PCD,連接DE,則∠BDE為BD與平面PDC所成角..
試題解析:(1)證明:如圖,
![]()
取CD的中點M,連接EM、BM,則四邊形ABMD為矩形
∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE?平面EBM,
∴BE∥平面PAD;
(2)證明:取PD的中點F,連接FE,則FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F(xiàn)為PD的中點,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)【解析】
∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
連接DE,則∠BDE為BD與平面PDC所成角.
在直角△BDE中,設(shè)AD=AB=a,則BE=AF=
,BD=
,∴sin∠BDE=
.
考點:1.直線與平面所成的角;2.直線與平面平行的判定.
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題
拋物線
的準(zhǔn)線方程是
,則
的值為( )
A.
B.
C.8 D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)
的圖象如右圖,下列結(jié)論成立的是( )
![]()
A.
B.![]()
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:填空題
在平面直角坐標(biāo)系
中,若點
到直線
的距離為
,且點
在不等式
表示的平面區(qū)域內(nèi),則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:選擇題
一個幾何體的三視圖如圖所示,則該幾何體的體積為
![]()
A.2 B.1 C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:填空題
過點P(3,4)的動直線與兩坐標(biāo)軸的交點分別為A,B,過A,B分別作兩軸的垂線交于點M,則點M的軌跡方程是。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在棱長為10的正方體ABCD—A1B1C1D1中,E、F分別是AD,A1D1的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A1B1C1D1上運動,則線段MN的中點P在二面角A—A1 D1 —B1內(nèi)運動所形成幾何體的體積為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高三上學(xué)期第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知某錐體的三視圖(單位:cm)如圖所示,則該錐體的體積為
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題
下圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)
對應(yīng)數(shù)軸上的點M(點A對應(yīng)實數(shù)0,點B對應(yīng)實數(shù)1),如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在
軸上,點A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長度對應(yīng)于圖③中的弧ADM的長度,如圖③,圖③中直線AM與
軸交于點N(
),則
的象就是
,記作![]()
![]()
給出下列命題:①
; ②
; ③
是奇函數(shù); ④
在定義域上單調(diào)遞增,則所有真命題的序號是______________.(填出所有真命題的序號)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com