設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,點(diǎn)
在橢圓上且異于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若直線
與
的斜率之積為
,求橢圓的離心率;
(2)對(duì)于由(1)得到的橢圓
,過點(diǎn)
的直線
交
軸于點(diǎn)
,交
軸于點(diǎn)
,若
,求直線
的斜率.
(1)
.
(2)
的斜率
.
【解析】試題分析:(1)先求出A,B的坐標(biāo),然后利用
與
的斜率之積為
,建立關(guān)于a的方程,從而求出a值,進(jìn)一步可求出橢圓的離心率.
(2)設(shè)直線
的斜率為
,
直線
的方程為
,則有
,
設(shè)
,由于
三點(diǎn)共線,且
,
再把此條件坐標(biāo)可知
,從而得到
或
,
再利用點(diǎn)P在橢圓上,可建立關(guān)于k的方程求出k的值.
解:(1) 由已知
,設(shè)
.
…………1分
則直線
的斜率
,
直線
的斜率
.
由
,得
.
…………2分
![]()
![]()
![]()
![]()
…………3分
,得
,
…………4分
![]()
.
…………5分
橢圓的離心率
.
…………6分
(2) 由題意知直線
的斜率存在.
…………7分
設(shè)直線
的斜率為
,
直線
的方程為
…………8分
則有
,
設(shè)
,由于
三點(diǎn)共線,且![]()
根據(jù)題意,得
…………9分
解得
或
…………11分
又點(diǎn)
在橢圓上,又由(1)知橢圓
的方程為![]()
所以
…………①
或
…………②
由①解得
,即
,
此時(shí)點(diǎn)
與橢圓左端點(diǎn)
重合,
舍去; …………12分
由②解得
,即
…………13分
直線直線
的斜率
.
…………14分
考點(diǎn):本小題主要考查直線斜率、橢圓的方程、離心率、向量的運(yùn)算等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、方程的思想方法,考查綜合運(yùn)用能力以及運(yùn)算求解能力.
點(diǎn)評(píng):兩點(diǎn)
的斜率公式
;另外解本小題的關(guān)鍵是條件
的使用,實(shí)際上此條件是用k表示出點(diǎn)P的坐標(biāo),再根據(jù)點(diǎn)P在橢圓上,建立關(guān)于k的方程求出k值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 4 |
| F1M |
| F2N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓
=1(a>b>0),其右準(zhǔn)線l與x軸交于點(diǎn)A,橢圓的上頂點(diǎn)為B,過它的右焦點(diǎn)F且垂直于長軸的直線交橢圓于點(diǎn)P,直線AB恰經(jīng)過線段FP的中點(diǎn)D.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別是A1、A2,且
=-3,求橢圓方程;
(Ⅲ)在(Ⅱ)的條件下,設(shè)Q是橢圓右準(zhǔn)線l上異于A的任意一點(diǎn),直線QA1、QA2與橢圓的另一個(gè)交點(diǎn)分別為M、N,求證:直線MN與x軸交于定點(diǎn).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
已知橢圓
的焦點(diǎn)在
軸上,中心在原點(diǎn),離心率
,直線
和以原點(diǎn)為圓心,橢圓
的短半軸為半徑的圓
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,點(diǎn)
是橢圓上異于
、
的任意一點(diǎn),設(shè)直線
、
的斜率分別為
、
,證明
為定值;
(Ⅲ)設(shè)橢圓方程
,
、
為長軸兩個(gè)端點(diǎn),
為橢圓上異于
、
的點(diǎn),
、
分別為直線
、
的斜率,利用上面(Ⅱ)的結(jié)論得
( )(只需直接寫出結(jié)果即可,不必寫出推理過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.(2012年高考天津卷理科19)(本小題滿分14分)設(shè)橢圓![]()
的左、右頂點(diǎn)分別為
,點(diǎn)P在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明:直線
的斜率
滿足
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com