已知圓
:
,拋物線
以圓心
為焦點,以坐標(biāo)原點為頂點.w.w.w.k.s.5.u.c.o.m
![]()
⑴求拋物線
的方程;
⑵設(shè)圓
與拋物線
在第一象限的交點為
,過
作拋物線
的切線與
軸的交點為
,動點
到
、
兩點距離之和等于
,求
的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知圓
:
,拋物線
以圓心
為焦點,以坐標(biāo)原點為頂點.
⑴ 求拋物線
的方程;
⑵ 設(shè)圓
與拋物線
在第一象限的交點為
,過
作拋物線
的切線與
軸的交點為
,動點
到
、
兩點距離之和等于
,求
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知圓
:
,拋物線
以圓心
為焦點,以坐標(biāo)原點為頂點.
⑴ 求拋物線
的方程;
⑵ 設(shè)圓
與拋物線
在第一象限的交點為
,過
作拋物線
的切線與
軸的交點為
,動點
到
、
兩點距離之和等于
,求
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知點
(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若
,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點
為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線
的方程是
,且以點
為圓心的圓
與直線
相切,
求圓
面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。
中∵直線
與曲線
相切,且過點
,∴
,利用求根公式得到結(jié)論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線
的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數(shù)的性質(zhì)圓
面積的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直線
與曲線
相切,且過點
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,則
的斜率
,
∴直線
的方程為:
,又
,
∴
,即
. -----------------7分
∵點
到直線
的距離即為圓
的半徑,即
,--------------8分
故圓
的面積為
. --------------------9分
(Ⅲ)∵直線
的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴![]()
,
當(dāng)且僅當(dāng)
,即
,
時取等號.
故圓
面積的最小值
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com