【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
【答案】(1)
; (2)
.
【解析】
(1)分別計算次數(shù)之和為
的兩種情況的選法,根據(jù)古典概型計算得到結(jié)果;(2)首先確定
所有可能的取值為
,分別結(jié)算每個取值所對應(yīng)的概率,從而可得分布列;根據(jù)數(shù)學(xué)期望的公式計算可得期望.
(1)參加義工活動次數(shù)之和為
,則
人分別參加活動次數(shù)為“
和
”或“
和
”
次數(shù)為“
和
”共有:
種選法;次數(shù)為“
和
”共有:
種選法
則![]()
所以事件
的發(fā)生的概率為![]()
(2)隨機(jī)變量
的所有可能的取值為![]()
;
;![]()
所以隨機(jī)變量
的分布列為:
|
|
|
|
|
|
|
|
數(shù)學(xué)期望![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點
為極點,以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)已知直線
與曲線
交于
兩點,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個數(shù),先在其中5個地區(qū)試點,得到試點地區(qū)加盟店個數(shù)分別為1,2,3,4,5時,單店日平均營業(yè)額
(萬元)的數(shù)據(jù)如下:
加盟店個數(shù) | 1 | 2 | 3 | 4 | 5 |
單店日平均營業(yè)額 | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營業(yè)額
(萬元)與所在地區(qū)加盟店個數(shù)
(個)的線性回歸方程;
(2)根據(jù)試點調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預(yù)計值總和不低于35萬元,求一個地區(qū)開設(shè)加盟店個數(shù)
的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個地區(qū)(加盟店都不少于2個)中隨機(jī)選一個地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:
,
,線性回歸方程
,其中
,
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開展“愛我家鄉(xiāng)”演講比賽,9位評委給小明同學(xué)打分的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個最高分和一個最低分后,算得平均分為
,復(fù)核員在復(fù)核時,發(fā)現(xiàn)有一個數(shù)字在莖葉圖中的卻無法看清,若記分員計算無誤,則數(shù)字
_________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
.
(1)當(dāng)
時,若對任意
均有
成立,求實數(shù)
的取值范圍;
(2)設(shè)直線
與曲線
和曲線
相切,切點分別為
,
,其中
.
①求證:
;
②當(dāng)
時,關(guān)于
的不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知正三棱錐
,
為
中點,過點
作截面
交
,
分別于點
,
,且
,
分別為
,
的中點.
![]()
(1)證明:
平面
;
(2)若
,
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
,
且
為該數(shù)列的前
項和.
(1)寫出數(shù)列
的通項公式;
(2)計算
,猜想
的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(3)求數(shù)列
的前
項和
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(其中
為參數(shù)),以原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(
為常數(shù),
,且
),點
(
在
軸下方)是曲線
與
的兩個不同交點.
(1)求曲線
的普通方程和
的直角坐標(biāo)方程;
(2)求
的最大值及此時點
的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com