【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)函數(shù)為
,其中
為常數(shù).
(1)當
時,求
的最大值;
(2)若
在區(qū)間
(
為自然對數(shù)的底數(shù))上的最大值為-3,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的圓心在直線
上,且圓
經(jīng)過曲線
與
軸的交點.
(1)求圓
的方程;
(2)已知過坐標原點
的直線
與圓
交
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN分別是邊長為1的正方形ABCD的邊BCCD的中點,將正方形沿對角線AC折起,使點D不在平面ABC內(nèi),則在翻折過程中,有以下結(jié)論:
![]()
①異面直線AC與BD所成的角為定值.
②存在某個位置,使得直線AD與直線BC垂直.
③存在某個位置,使得直線MN與平面ABC所成的角為45°.
④三棱錐M-ACN體積的最大值為
.
以上所有正確結(jié)論的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,D,E,F分別是B1C1,AB,AA1的中點.
![]()
(1) 求證:EF∥平面A1BD;
(2) 若A1B1=A1C1,求證:平面A1BD⊥平面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點分別為
,上頂點為
,若直線
的斜率為1,且與橢圓的另一個交點為
,
的周長為
.
(1)求橢圓的標準方程;
(2)過點
的直線
(直線
的斜率不為1)與橢圓交于
兩點,點
在點
的上方,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年
月某城市國際馬拉松賽正式舉行,組委會對
名裁判人員進(年齡均在
歲到
歲)行業(yè)務(wù)培訓(xùn),現(xiàn)按年齡(單位:歲)進行分組統(tǒng)計:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如下:
![]()
(1)若把這
名裁判人員中年齡在
稱為青年組,其中男裁判
名;年齡在
的稱為中年組,其中男裁判
名.試完成
列聯(lián)表并判斷能否在犯錯誤的概率不超過
的前提下認為裁判員屬于不同的組別(青年組或中年組)與性別有關(guān)系?
![]()
(2)培訓(xùn)前組委會用分層抽樣調(diào)查方式在第
組共抽取了
名裁判人員進行座談,若將其中抽取的第
組的人員記作
,第
組的人員記作
,第
組的人員記作
,若組委會決定從上述
名裁判人員中再隨機選
人參加新聞發(fā)布會,要求這
組各選
人,試求裁判人員
不同時被選擇的概率;
附: ![]()
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)經(jīng)過點(
,1),以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得
恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com