| A. | ($\frac{2}{3}$,1) | B. | ($\frac{1}{2}$,$\frac{2}{3}$) | C. | ($\frac{1}{3}$,$\frac{1}{2}$) | D. | (0,$\frac{1}{3}$) |
分析 易知函數(shù)f(x)=2-x-$\root{3}{x}$在定義域上為連續(xù)減函數(shù),從而由函數(shù)零點(diǎn)的判定定理確定區(qū)間.
解答 解:易知函數(shù)f(x)=2-x-$\root{3}{x}$在定義域上為連續(xù)減函數(shù),
又∵f($\frac{1}{2}$)=$\frac{1}{\sqrt{2}}-\frac{1}{\root{3}{2}}$<0,
f($\frac{2}{3}$)=${2}^{-\frac{2}{3}}$-$\root{3}{\frac{2}{3}}$>0;
故x0所在的大致區(qū)間是($\frac{1}{2}$,$\frac{2}{3}$).
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)的判定定理的應(yīng)用,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 已知向量$\vec a,\vec b$為非零向量,則“$\vec a,\vec b$的夾角為鈍角”的充要條件是“$\vec a•\vec b<0$” | |
| B. | 對(duì)于命題p和q,“p且q為真命題”的必要而不充分條件是“p或q為真命題” | |
| C. | 命題“若x2=1,則x=1或x=-1”的逆否命題為“若x≠1或x≠-1,則x2≠1” | |
| D. | 若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,$\frac{1+\sqrt{5}}{2}$) | B. | ($\frac{1+\sqrt{5}}{2}$,+∞) | C. | ($\sqrt{2}$,$\frac{1+\sqrt{5}}{2}$) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16 | B. | 31 | C. | 32 | D. | 256 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com