(本小題滿分12分)在三棱錐
中,
是邊長(zhǎng)為4的正三角形,
,
,
、
分別是
、
的中點(diǎn);![]()
(1)證明:平面![]()
平面
;
(2)求直線
與平面
所成角的正弦值。
(1)只需證
;(2)
。
解析試題分析:(1)取
中點(diǎn)
,連
,
,得到
,![]()
得到![]()
……………… ………..6分
(2)以
為原點(diǎn),
為
軸,
為
軸,
為
軸建立空間直角坐標(biāo)系有,
,
,
,
,
,
得到
,
,
,設(shè)平面
的法向量為
,則有
,令
得到
……………………………………….……..8分
設(shè)直線
與平面
所成角為
,則
…… ………..12分
考點(diǎn):面面垂直的判定定理;線面角。
點(diǎn)評(píng):證明線面垂直的常用方法:
①線線垂直Þ線面垂直
若一條直線垂直平面內(nèi)兩條相交直線,則這條直線垂直這個(gè)平面。
即
。![]()
②面面垂直Þ線面垂直
兩平面垂直,其中一個(gè)平面內(nèi)的一條直線垂直于它們的交線,則這條直線垂直于另一個(gè)平面。
即![]()
![]()
③兩平面平行,有一條直線垂直于垂直于其中一個(gè)平面,則這條直線垂直于另一個(gè)平面。
即![]()
![]()
④兩直線平行,其中一條直線垂直于這個(gè)平面,則另一條直線也垂直于這個(gè)平面。
即![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐P-ABC中, AB="AC=4," D、E、F分別為PA、PC、BC的中點(diǎn), BE="3," 平面PBC⊥平面ABC, BE⊥DF.![]()
(Ⅰ)求證:BE⊥平面PAF;
(Ⅱ)求直線AB與平面PAF所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角
,如圖二,在二面角
中.![]()
(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對(duì)于AD上任意點(diǎn)H,CH不與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐
的底面為等腰梯形,
∥
,
,垂足為
,
是四棱錐的高。![]()
(Ⅰ)證明:平面![]()
平面
;
(Ⅱ)若
,
60°,求四棱錐
的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱
的所有棱長(zhǎng)都為2,
為
中點(diǎn),
平面![]()
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn)。![]()
(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共13分)
如圖所示,正方形
與矩形
所在平面互相垂直,
,點(diǎn)E為
的中點(diǎn)。![]()
(Ⅰ)求證:
(Ⅱ) 求證:![]()
(Ⅲ)在線段AB上是否存在點(diǎn)
,使二面角
的大小為
?若存在,求出
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.![]()
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長(zhǎng)度之比;
(3) 若D是棱CC1的中點(diǎn),問(wèn)在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐
中,底面
是邊長(zhǎng)為2的正方形,
,且
,
為
中點(diǎn).![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的大;
(Ⅲ)在線段
上是否存在點(diǎn)
,使得點(diǎn)
到平
面
的距離為
?若存在,確定點(diǎn)
的位置;
若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com