欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.設(shè)點(diǎn)P在曲線y=x2+1(x≥0)上,點(diǎn)Q在曲線y=$\sqrt{x-1}$(x≥1)上,則|PQ|的最小值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

分析 曲線y=$\sqrt{x-1}$的圖象在第一象限,要使曲線y=x2+1上的點(diǎn)與曲線y=$\sqrt{x-1}$上的點(diǎn)取得最小值,點(diǎn)P應(yīng)在曲線y=x2+1的第一象限內(nèi)的圖象上,分析可知y=x2+1(x≥0)與y=$\sqrt{x-1}$互為反函數(shù),它們的圖象關(guān)于直線y=x對稱,所以,求出y=$\sqrt{x-1}$上點(diǎn)Q到直線y=x的最小值,乘以2即可得到|PQ|的最小值.

解答 解:由y=x2+1,得:x2=y-1,x=$±\sqrt{y-1}$.
所以,y=x2+1(x≥0)與y=$\sqrt{x-1}$互為反函數(shù).
它們的圖象關(guān)于y=x對稱.
P在曲線y=x2+1上,點(diǎn)Q在曲線y=$\sqrt{x-1}$上,
設(shè)P(x,1+x2),Q(x,$\sqrt{x-1}$)
要使|PQ|的距離最小,則P應(yīng)在y=x2+1(x≥0)上,
又P,Q的距離為P或Q中一個(gè)點(diǎn)到y(tǒng)=x的最短距離的兩倍.
以Q點(diǎn)為例,Q點(diǎn)到直線y=x的最短距離
d=$\frac{|x-\sqrt{x-1}|}{\sqrt{2}}$=$\frac{|(\sqrt{x-1})^{2}+1-\sqrt{x-1}|}{\sqrt{2}}$=$\frac{|(\sqrt{x-1}-\frac{1}{2})^{2}+\frac{3}{4}|}{\sqrt{2}}$.
所以當(dāng)$\sqrt{x-1}$=$\frac{1}{2}$,即x=$\frac{5}{4}$時(shí),d取得最小值$\frac{3\sqrt{2}}{8}$,
則|PQ|的最小值等于2×$\frac{3\sqrt{2}}{8}$=$\frac{3\sqrt{2}}{4}$.
故選:B.

點(diǎn)評 本題考查了反函數(shù),考查了互為反函數(shù)圖象之間的關(guān)系,考查了數(shù)學(xué)轉(zhuǎn)化思想,解答此題的關(guān)鍵是把求兩曲線上點(diǎn)的最小距離問題,轉(zhuǎn)化為求一支曲線上的動(dòng)點(diǎn)到定直線的最小距離問題,此題是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某學(xué)校實(shí)驗(yàn)室有濃度為2g/ml和0.2g/ml的兩種K溶液.在使用之前需要重新配制溶液,具體操作方法為取濃度為2g/ml和0.2g/ml的兩種K溶液各300ml分別裝入兩個(gè)容積都為500ml的錐形瓶A,B中,先從瓶A中取出100ml溶液放入B瓶中,充分混合后,再從B瓶中取出100ml溶液放入A瓶中,再充分混合.以上兩次混合過程完成后算完成一次操作.設(shè)在完成第n次操作后,A瓶中溶液濃度為ang/ml,B瓶中溶液濃度為bng/ml.(lg2≈0.301,lg3≈0.477)
(1)請計(jì)算a1,b1,并判定數(shù)列{an-bn}是否為等比數(shù)列?若是,求出其通項(xiàng)公式;若不是,請說明理由;
(2)若要使得A,B兩個(gè)瓶中的溶液濃度之差小于0.01g/ml,則至少要經(jīng)過幾次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)集合A={3,m},B={3m,3},且A=B,則實(shí)數(shù)m的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\left\{\begin{array}{l}{cos\frac{πx}{6},0<x≤8}\\{lo{g}_{2}x,x>8}\end{array}\right.$,則f(f(-16))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,設(shè)拋物線y=-x2+1的頂點(diǎn)為A,與x軸正半軸的交點(diǎn)為B,設(shè)拋物線與兩坐標(biāo)軸正半軸圍成的區(qū)域?yàn)镸,隨機(jī)往M內(nèi)投一點(diǎn),則點(diǎn)P落在△AOB內(nèi)的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}(x≥0)}\\{lo{g}_{3}(-x)(x<0)}\end{array}\right.$,函數(shù)g(x)=[f(x)]2+f(x)+t,t∈R,則下列判斷不正確的是( 。
A.若t=$\frac{1}{4}$,則g(x)有一個(gè)零點(diǎn)B.若-2<t<$\frac{1}{4}$,則g(x)有兩個(gè)零點(diǎn)
C.若t<-2,則g(x)有四個(gè)零點(diǎn)D.若t=-2,則g(x)有三個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知方程4x|x|+y|y|=4的曲線為函數(shù)y=f(x)的圖象,對于函數(shù)f(x)有如下結(jié)論,其中正確的是②⑤.(寫出所有正確結(jié)論的序號)
①函數(shù)y=f(x)是R上的奇函數(shù)
②函數(shù)y=f(x)是R上的減函數(shù)
③函數(shù)f(x)的圖象關(guān)于直線y=2x對稱
④函數(shù)y=g(x)和y=f(x)的圖象關(guān)于原點(diǎn)對稱,則函數(shù)g(x)的圖象是方程4x|x|-y|y|=4表示的曲線
⑤方程f(x)+2x=k恰有兩個(gè)不等的解,則k∈(0,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=3x2-2tx-1,x∈[-1,1],t∈R.
(Ⅰ)若t∈[0,3],求f(x)的值域;
(Ⅱ)求證:|f(x)|≤max{f(-1),f(1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)x∈[-3,-1)時(shí),f(x)=-(x+2)2,當(dāng)x∈[-1,3)時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.336B.355C.1676D.2015

查看答案和解析>>

同步練習(xí)冊答案