【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校甲、乙兩個(gè)田徑隊(duì)中
名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試
人的跳高成績(jī)(單位:
).跳高成績(jī)?cè)?/span>
以上(包括
)定義為“合格”,成績(jī)?cè)?/span>
以下(不包括
)定義為“不合格”.鑒于乙隊(duì)組隊(duì)晚,跳高成績(jī)相對(duì)較弱,為激勵(lì)乙隊(duì)隊(duì)隊(duì),學(xué)校決定只有乙隊(duì)中“合格”者才能參加市運(yùn)動(dòng)會(huì)開(kāi)幕式旗林隊(duì).
![]()
(1)求甲隊(duì)隊(duì)員跳高成績(jī)的中位數(shù);
(2)如果用分層抽樣的方法從甲、乙兩隊(duì)所有的運(yùn)動(dòng)員中共抽取
人,則
人中“合格”與“不合格”的人數(shù)各為多少;
(3)若從所有“合格”運(yùn)動(dòng)員中選取
名,用
表示所選運(yùn)動(dòng)員中能參加市運(yùn)動(dòng)會(huì)開(kāi)幕式旗林隊(duì)的人數(shù),試求
的概率.
【答案】(1)
;(2)“合格”有
人,“不合格”有
人;(3)
.
【解析】
(1)將數(shù)據(jù)從小到大排列,找到中間的兩個(gè)數(shù),再求平均數(shù)即得中位數(shù);
(2)根據(jù)莖葉圖,有“合格”
人,“不合格”
人,求出每個(gè)運(yùn)動(dòng)員被抽中的概率,然后根據(jù)分層抽樣可求得結(jié)果;
(3)根據(jù)莖葉圖,確定甲隊(duì)和乙隊(duì)“合格”的人數(shù),利用古典概型的概率公式可求出
的概率.
(1)甲隊(duì)隊(duì)員跳高的成績(jī)由小到大依次為
、
、
、
、
、
、
、
、
、
、
、
(單位:
),中位數(shù)為
;
(2)根據(jù)莖葉圖,有“合格”
人,“不合格”
人,用分層抽樣的方法,每個(gè)運(yùn)動(dòng)員被抽中的概率是
,
所以選中的“合格”有
人,“不合格”有
人;
(3)由題意得,乙隊(duì)“合格”有
人,分別記為
、
、
、
,甲隊(duì)“合格”有
人,分別記為
、
、
、
、
、
、
、
,
從這
人中任意挑選
人,所有的基本事件有:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,共
種,
其中,事件
包含的基本事件有:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,共
個(gè),因此,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,射線
的方程為
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的方程為
.一只小蟲(chóng)從點(diǎn)
沿射線
向上以
單位/min的速度爬行
(1)以小蟲(chóng)爬行時(shí)間
為參數(shù),寫(xiě)出射線
的參數(shù)方程;
(2)求小蟲(chóng)在曲線
內(nèi)部逗留的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在
市與
市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為
,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹(shù)或者木棉樹(shù),且種植每種樹(shù)木的概率均為
.
(1)現(xiàn)征求兩市居民的種植意見(jiàn),看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:
A市居民 | B市居民 | |
喜歡楊樹(shù) | 300 | 200 |
喜歡木棉樹(shù) | 250 | 250 |
是否有
的把握認(rèn)為喜歡樹(shù)木的種類(lèi)與居民所在的城市具有相關(guān)性;
(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有
個(gè)路口種植楊樹(shù),求
的分布列以及數(shù)學(xué)期望;
(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹(shù)的路口,記總的選取方法數(shù)為
,求證:
.
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是⊙
的直徑,
是⊙
的切線,
交⊙
于E,過(guò)E的切線與
交于D.
![]()
(I)求證:
;
(II)若
,
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:①若“
”是“
”的充要條件;
②若“
,
”,則實(shí)數(shù)
的取值范圍是
;
③已知平面
、
、
,直線
、
,若
,
,
,
,則
;
④函數(shù)
的所有零點(diǎn)存在區(qū)間是
.
其中正確的個(gè)數(shù)是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-ax-alnx(a∈R).
(1)若函數(shù)f(x)在x=1處取得極值,求a的值;
(2)在(1)的條件下,求證:f(x)≥-
+
-4x+
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一項(xiàng)針對(duì)某一線城市30~50歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購(gòu)買(mǎi)六類(lèi)高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動(dòng)與戶外用品、珠寶首飾、箱包)的金額(萬(wàn)元)的頻數(shù)分布表如下:
![]()
(1)將頻率視為概率,估計(jì)該城市中年人購(gòu)買(mǎi)六類(lèi)高價(jià)商品的金額不低于5000元的概率.
(2)把購(gòu)買(mǎi)六類(lèi)高價(jià)商品的金額不低于5000元的中年人稱(chēng)為“高收入人群”,根據(jù)已知條件完成2
2列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為“高收入人群”與性別有關(guān)?
![]()
參考公式:
,其中![]()
參考附表:
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,焦點(diǎn)為
的拋物線
的準(zhǔn)線被橢圓
截得的弦長(zhǎng)為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
、
到直線
的距離之積為
,求證:直線
與橢圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生對(duì)函數(shù)
的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:
函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增;
點(diǎn)
是函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心;
函數(shù)圖象關(guān)于直線
對(duì)稱(chēng);
存在常數(shù)
,使
對(duì)一切實(shí)數(shù)x均成立,
其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com