欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
11.為了適應市場需要,某地準備建一個圓形生豬儲備基地(如圖),它的附近有一條公路,從基地中心O處向東走1km是儲備基地的邊界上的點A,接著向東再走7km到達公路上的點B;從基地中心O向正北走8km到達公路的另一點C.現(xiàn)準備在儲備基地的邊界上選一點D,修建一條由D通往公路BC的專用線DE,求DE的最短距離.

分析 根據題意建立平面直角坐標系,求出O,A,B,C的坐標,求圓O及直線BC的方程,由圖可得當中心到直線BC的距離減去半徑得到DE的最小值,即可求DE的最短距離.

解答 解:以O為原點,OB所在直線為x軸,OC所在直線為y軸,
建立平面直角坐標系,如圖所示:
由題意可得O(0,0),A(1,0),B(8,0),C(0,8),
則圓O的方程是:x2+y2=1,
直線BC的方程:x+y-8=0;
所以點O到直線BC距離d=$\frac{8}{\sqrt{2}}$=4$\sqrt{2}$,
由圖得,當中心到O直線BC的距離減去半徑得到DE的最小值,
此時最短距離|DE|=4$\sqrt{2}$-1(km).

點評 本題考查了利用坐標法解決應用問題,圓及直線的方程,建立適當的坐標系是解題的關鍵,考查數形結合思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.若執(zhí)行如圖的程序框圖,輸出S的值為(x+$\frac{1}{\sqrt{x}}$)3展開式中的常數項,則判斷框中應填入的條件是( 。
A.k<9?B.k<8?C.k<7?D.k<6?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.函數y=sin(2x+$\frac{π}{4}$)
(1)求A,ω,φ的值;  
(2)求x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.為了調查市民對某活動的認可程度,研究人員對其所在地區(qū)年齡在10~60歲間的n位市民作出調查,并將統(tǒng)計結果繪制成頻率分布直方圖如圖所示,若被調查的年齡在20~30歲間的市民有480人,則可估計被調查的年齡在40~50歲間的市民有320人.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數 f( x)=a-$\frac{1}{{2}^{x}+1}$( x∈R).
(1)若 f( x)為奇函數,求 a的值;
(2)在(1)的條件下,求 f( x)在區(qū)間[1,5]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知二次函數y=ax2+1的圖象為拋物線C,過頂點A(0,1)的直線l與拋物線C相交于另外一點P,點Q為拋物線C上另外一點,且點M(0,m)到直線l的距離為1.
(Ⅰ)若直線l的斜率為k,且|k|∈[$\frac{{\sqrt{3}}}{3}$,$\sqrt{3}}$],求實數m的取值范圍;
(Ⅱ)當m=$\sqrt{2}$+1時,△APQ的內心恰好是點M,求此二次函數的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.解答下列問題:
(1)求2sin405°tan(-120°)+3cos315°tan210°;
(2)已知sinα=$\frac{1}{2}$,tanα>0,求$\frac{(2+co{s}^{2}α)(2-si{n}^{2}α)}{2+3ta{n}^{2}α}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知e為自然對數的底數,設函數f(x)=ex(x-1),則( 。
A.f(x)在x=1處取到極大值B.f(x)在x=1處取到極小值
C.f(x)在x=0處取到極大值D.f(x)在x=0處取到極小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.數列{an}的前n項和為Sn,滿足:Sn=f(n)=n2+2a|n-2|.
(1)若數列{an}為遞增數列,求實數a的取值范圍;
(2)當a=$\frac{1}{2}$時,設數列{bn}滿足:bn=2an,記{bn}的前n項和為Tn,求Tn,并求滿足不等式Tn>2015的最小整數n.

查看答案和解析>>

同步練習冊答案