| A. | 29 | B. | 49 | C. | 50 | D. | 58 |
分析 由已知條件推導出a1+a10=2a1+9d=56,a1+8d=a9,由此得到7(64-a1)=9a9,從而能求出a9最大值為49.
解答 解:∵S10=5(a1+a10)=280,
∴a1+a10=2a1+9d=56,①
而a1+8d=a9,②
①×8-②×9,得:7a1=56×8-9a9,
變形:7(64-a1)=9a9,
∵an∈N*,∴a9是7的倍數(shù),64-a1是9的倍數(shù),
64-a1越大,a9越大.64-a1最大是63 (必須滿足是7的倍數(shù)),
此時a9=49
∴a9最大值為49.
故選:B.
點評 本題考查等差數(shù)列中第9項的最大值的求法,解題時要認真審題,注意等差數(shù)列的前n項和公式的合理運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{2{a}_{1}+3{a}_{2}}{5}$ | B. | $\frac{3{a}_{1}+2{a}_{2}}{5}$ | C. | a1+a2 | D. | $\frac{{a}_{1}+{a}_{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{π}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 6$\sqrt{3}$ | B. | 12 | C. | 12$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | y=-$\frac{1}{x}$ | B. | y=3-x-3x | C. | y=x|x| | D. | y=x3-x |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com