設(shè)函數(shù)
.
(1)若曲線
在點
處與直線
相切,求a,b的值;
(2)求函數(shù)
的單調(diào)區(qū)間.
(1)
;(2)
.
解析試題分析:(1)首先對
求導(dǎo),得
,利用導(dǎo)數(shù)的幾何意義求出和切點的意義可得
,可得
,即可解出a,b;(2)根據(jù)
,就方程
是否有解,利用
和
展開討論,得出單調(diào)區(qū)間.
解:(1)∵![]()
因為曲線
在點
處與直線
相切,
∵
,(2分)即
解得
, (6分
(2)∵![]()
若
,即
,
,
函數(shù)
在(-∞,+∞)上單調(diào)遞增(8分)
若
,即
,此時
的兩個根為![]()
當
或
時![]()
當
時,
(11分)
故
時,單增區(qū)間為當
,![]()
單減區(qū)間為
(13分)
考點:1.導(dǎo)數(shù)的幾何意義;2.導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)若
在
時有極值,求實數(shù)
的值和
的極大值;
(2)若
在定義域上是增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•重慶)設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(1)求實數(shù)
的值;
(2)求
在區(qū)間
上的最大值;
(3)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
![]()
(1)求函數(shù)
的單調(diào)增區(qū)間;
(2)若
,求函數(shù)
在[1,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
為自然對數(shù)的底數(shù)).
(1)求曲線
在
處的切線方程;
(2)若
是
的一個極值點,且點
,
滿足條件:
.
(ⅰ)求
的值;
(ⅱ)求證:點
,
,
是三個不同的點,且構(gòu)成直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若函數(shù)
的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)
的圖象上任意一點的切線斜率為k,試求
的充要條件;
(3)若函數(shù)
的圖象上任意不同的兩點的連線的斜率小于l,求證
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com