【題目】已知函數(shù)f(x)=(x﹣1)2(x﹣a)(a∈R)在x=
處取得極值.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)y=f(x)在閉區(qū)間[0,3]的最大值與最小值.
【答案】
(1)解:f'(x)=(x﹣1)(3x﹣2a﹣1)
由 ![]()
(2)解:由(1)得f((x)=(x﹣1)2(x﹣2)),f'(x)=(x﹣1)(3x﹣5)
由f'(x)=0得x=1或
,列出變化表如下:
x | 0 | (0,1) | 1 | (1 |
| ( | 3 |
f'(x) | + | 0 | ﹣ | 0 | + | ||
f(x) | ﹣2 | 0 |
| 4 |
所以,f(x)最大值為4,f(x)最小值為﹣2
【解析】(1)根據(jù)導(dǎo)數(shù)和函數(shù)的極值得關(guān)系即可求出a的值;(2)先求出其導(dǎo)函數(shù),再讓其導(dǎo)函數(shù)大于0對應(yīng)區(qū)間為增區(qū)間,小于0對應(yīng)區(qū)間為減區(qū)間,即可判斷在[0,3]上單調(diào)性,即可求出最值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的極值與導(dǎo)數(shù)和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值;求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點(diǎn)處的函數(shù)值
,
比較,其中最大的是一個最大值,最小的是最小值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖
,四邊形
為等腰梯形,
,將
沿
折起,使得平面
平面
為
的中點(diǎn),連接
(如圖2).
![]()
(1)求證:
;
(2)求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系
的原點(diǎn)為極點(diǎn),
軸正半軸為極軸且取相同的單位長度建立極坐標(biāo)系.已知點(diǎn)
的參數(shù)方程為
(
為參數(shù)),點(diǎn)
在曲線
上.
(1)求在平面直角坐標(biāo)系
中點(diǎn)
的軌跡方程和曲線
的普通方程;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
,橢圓
的左焦點(diǎn)為
,右焦點(diǎn)為
,點(diǎn)
是橢圓
上位于
軸上方的動點(diǎn),且
,直線
與直線
分別交于
兩點(diǎn).
(1)求橢圓
的方程及線段
的長度的最小值;
(2)
是橢圓
上一點(diǎn),當(dāng)線段
的長度取得最小值時,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x﹣1)=﹣f(﹣x+1),且當(dāng)x≤0時,f(x)=x3 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2
f(x)恒成立,則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax+
﹣1. (Ⅰ)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)當(dāng)a=
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)g(x)=x2﹣2bx﹣
,若對于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b是實(shí)數(shù),函數(shù)f(x)=x|x﹣a|+b.
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函數(shù)f(x)在[﹣4,5]上恒有三個零點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足xf′(x)+2f(x)=
,且f(e)= ![]()
(Ⅰ)求f(x)的表達(dá)式
(Ⅱ)求函數(shù)f(x)在[1,e2]上的最大值與最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com