【題目】已知函數(shù)
.
討論函數(shù)
的極值點的個數(shù);
若函數(shù)
有兩個極值點
,
,證明:
.
【答案】(1)見解析 (2)見解析
【解析】
先求出函數(shù)的導函數(shù),通過討論a的范圍確定導函數(shù)的符號,從而得出函數(shù)的單調區(qū)間,進而判斷函數(shù)極值點個數(shù);
由
可知當且僅當
時
有極小值
和極大值
,且
,
是方程的兩個正根,則
,
根據函數(shù)
表示出
,令
,通過對
求導即可證明結論.
解:
函數(shù)
,
, ![]()
,
當
時,
,
,
當
時,
,
單調遞減;
當
時,
,
單調遞增;
當
時,
有極小值;
當
時,
,故
,
在
上單調遞減,故此時
無極值;
當
時,
,方程
有兩個不等的正根
,
.
可得
,
.
則當
及
時,
,
單調遞減;
當
時,
;
單調遞增;
在
處有極小值,在
處有極大值.
綜上所述:當
時,
有1個極值點;
當
時,
沒有極值點;
當
時,
有2個極值點.
由
可知當且僅當
時
有極小值點![]()
和極大值點
,且
,
是方程的兩個正根,
則
,
.
;
令
,
;
,
在
上單調遞減,故
,
.
科目:高中數(shù)學 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應國家精準扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應的管理時間的關系如下表所示:
土地使用面積 | 1 | 2 | 3 | 4 | 5 |
管理時間 | 8 | 10 | 13 | 25 | 24 |
并調查了某村300名村民參與管理的意愿,得到的部分數(shù)據如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關系數(shù)
的大小,并判斷管理時間
與土地使用面積
是否線性相關?
(2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關性?
(3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為
,求
的分布列及數(shù)學期望。
參考公式:
![]()
![]()
其中
。臨界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據:![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,把函數(shù)
的圖象向右平移
個單位,再把圖象上所有的點的橫坐標縮小到原來的一半(縱坐標不變),得到函數(shù)
的圖象,則下列結論正確的是( )
A.
的最小正周期為
B.
的圖象關于直線
對稱
C.
的一個零點為
D.
在
上單調遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校200名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 |
|
|
|
|
|
|
總人數(shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在
的學生評價為“鍛煉達標”.
(1)請根據上述表格中的統(tǒng)計數(shù)據填寫下面的
列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.
參考公式:
,其中
.
臨界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學研究表明,人極易受情緒的影響,某選手參加7局4勝制的兵乒球比賽.
(1)在不受情緒的影響下,該選手每局獲勝的概率為
;但實際上,如果前一句獲勝的話,此選手該局獲勝的概率可提升到
;而如果前一局失利的話,此選手該局獲勝的概率則降為
,求該選手在前3局獲勝局數(shù)
的分布列及數(shù)學期望;
(2)假設選手的三局比賽結果互不影響,且三局比賽獲勝的概率為
,記
為銳角
的內角,求證:![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為實現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結合某貧困村水質優(yōu)良的特點,決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進行養(yǎng)殖試驗,試驗后選擇其中一種進行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨立.
(1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數(shù)為
,求
的分布列和數(shù)學期望;
(2)試驗后發(fā)現(xiàn)乙種魚苗較好,扶貧工作組決定購買
尾乙種魚苗進行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實施對能夠自然成活的魚苗不產生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】瑞士著名數(shù)學家歐拉在研究幾何時曾定義歐拉三角形,
的三個歐拉點(頂點與垂心連線的中點)構成的三角形稱為
的歐拉三角形.如圖,
是
的歐拉三角形(H為
的垂心).已知
,
,
,若在
內部隨機選取一點,則此點取自陰影部分的概率為________.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右焦點為
,左右兩頂點
,點
為橢圓
上任意一點,滿足直線
的斜率之積為
,且
的最大值為4.
(1)求橢圓
的標準方程;
(2)若直線
與過點
且與
軸垂直的直線交于點
,過點
作
,垂足分別為
兩點,求證:
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com