分析 (1)在△ACD中使用正弦定理求出CD,則h=CDsin∠ADC;
(2)在△ACD中使用正弦定理求出AC,在△ABC中使用正弦定理用θ表示出AB,BC,將問(wèn)題轉(zhuǎn)化為三角函數(shù)的最值問(wèn)題求解;
(3)△ABD的外接圓與△CBD的外接圓重合可知四點(diǎn)共圓,從而求出∠ACB和∠BAC,使用正弦定理解出各邊,帶入面積公式.
解答 解:(1)∠BAC=180°-120°-15°=45°,∠CAD=90°-∠BAC=45°,∴∠ADC=75°.
在△ACD中,由正弦定理得:$\frac{AD}{sin60°}=\frac{CD}{sin45°}$,∴CD=$\frac{ADsin45°}{sin60°}$=2$\sqrt{2}$.
∴h=CD•sin∠ADC=2$\sqrt{2}$•sin75°=$\sqrt{3}$+1.
(2)∠BAC=60°-θ,∴∠CAD=30°+θ,∠ADC=90°-θ.
在△ACD中,∵$\frac{AD}{sin∠ACD}=\frac{AC}{sin∠ADC}$,∴$\frac{2\sqrt{3}}{sin60°}=\frac{AC}{sin(90°-θ)}$,解得AC=4cosθ.
在△ABC中,∵$\frac{AB}{sin∠ACB}=\frac{BC}{sin∠BAC}=\frac{AC}{sin∠ABC}$,∴$\frac{AB}{sinθ}=\frac{BC}{sin(60°-θ)}=\frac{4cosθ}{sin120°}$.
解得AB=$\frac{8sinθcosθ}{\sqrt{3}}$,BC=4cos2θ-$\frac{4sinθcosθ}{\sqrt{3}}$,
∴AB+BC=4cos2θ+$\frac{4sinθcosθ}{\sqrt{3}}$=2cos2θ+$\frac{2\sqrt{3}}{3}$sin2θ+2=$\frac{4\sqrt{3}}{3}$sin(2θ+φ)+2.
∴當(dāng)sin(2θ+φ)=1時(shí),AB+BC取得最大值$\frac{4\sqrt{3}}{3}$+2.
(3)∵△ABD的外接圓與△CBD的外接圓重合,∴A,B,C,D四點(diǎn)共圓.
∴∠BCD=90°,∠ACB=∠BAC=∠D=30°,
在△ABC中,∵$\frac{AC}{sin120°}=\frac{AB}{sin30°}=\frac{BC}{sin30°}$,∴AB=BC=2,∴S△ABC=$\frac{1}{2}AB•BC•sin120°$=$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了正弦定理在解三角形中的應(yīng)用,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | A?B | B. | A=B | C. | A∩B=B | D. | A∪B=(0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com